
hacker bits
June 2016

Hello from sunny (finally!) Redmond!

Can it really be June already?! Time does indeed
fly…just ask Adrian Kosmaczewski who shows us
how to navigate an industry littered with forgotten
technologies and has-beens. Find out more in his
blast-through-the-past account of “Life as a developer
after 40.”

Curious about Progressive Web Apps? Then don’t
miss this issue’s interview with Henrik Joreteg,
expert on all things PWA, who gives us the lowdown
on this exciting new mobile technology.

As always, our objective at Hacker Bits is to help
readers like you learn and grow, and that’s why we
are rolling out a new feature called Spotlight where
we get tech experts to reveal their professional
secrets.

Lastly, congratulations to the winners of our
giveaway!

Time is precious so let's dive into another wonderful
issue of Hacker Bits!

Peace and plenty of ice cream!

— Maureen and Ray
us@hackerbits.com

new bits

mailto:us@hackerbits.com

3hacker bits

content bits

06 Fingerprints are usernames, not
passwords

Am I really a developer or just a
good Googler?

10 Develop the three great virtues
of a programmer: laziness,
impatience, and hubris

26 Implementers, solvers, and
finders

38 19 tips for everyday git use

48 It takes all kinds

52 When to rewrite from scratch:
autopsy of a failed software

56 Clojure, the good parts

34 Are Progressive Web Apps the
future of the Internet?

June 2016

16 Being a developer after 40

30 20 lines of code that will beat A/B
testing every time

08

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

4 hacker bits

Reginald Braithwaite
Reg is the author of
JavaScript Allongé,
CoffeeScript Ristretto
and raganwald.com. He
develops user experi-
ences at PagerDuty. His
interests include con-
structing surreal num-
bers, deconstructing
hopelessly egocentric
nulls, and celebrating
the joy of program-
ming. His other works
are on GitHub and
Leanpub, and you can
follow him on Twitter
@raganwald.

Randall Koutnik
Randall is a Senior UI
Engineer at Netflix and
holds a lot of strong
opinions about Star
Wars. He'd love to hear
from you via hacker-
bits@rkoutnik.com.

Adrian Kosmaczewski
Adrian is a writer,
software developer
and teacher. He is the
author of two books
about mobile software
development, and has
shipped mobile, web
and desktop apps for
iOS, Android, Mac OS
X, Windows and Li-
nux since 1996. Adri-
an olds a Masters in
Information Technology
from the University of
Liverpool.

Steve Hanov
Steve can be found at
various coffee shops
in Waterloo, Ontario,
where he writes code
and occasionally re-
sponds to emails from
customers of his web
businesses webse-
quencediagrams.com
and zwibbler.com. He
has three children, one
wife, and two birds.

Scott Hanselman
Scott is a web develop-
er and has blogged at
hanselman.com for over
a decade. He works
in Open Source on
ASP.NET and the Azure
Cloud for Microsoft out
of his home office in
Portland, OR. Scott has
3 podcasts, hanselmin-
utes.com, thisdevelop-
erslife.com and ratch-
etandthegeek.com.
He's written a number
of books and spoken in
person to almost 500K
devs worldwide.

Dustin Kirkland
Dustin is an Ubun-
tu dev and product
manager at Canoni-
cal. Formerly, CTO of
Gazzang, he created
an innovative manage-
ment system for cloud
apps. At IBM, Dustin
contributed to many
Linux security projects
and filed 70+ pat-
ents. He is the author
of 20+ open source
projects, including
Byobu, eCryptfs, ssh-
import-id, and entropy.
ubuntu.com. Twitter
@dustinkirkland.

Justin Etheredge
Justin is the cofounder
of Ecstatic Labs, a small
consulting company
based out of Richmond,
Virginia. His goal is to
make software more
friendly, one applica-
tion at a time.

Alex Kras
Alex is a Software Engi-
neer by day and Online
Marketer by night. You
can find his blog and
learn more about him
at alexkras.com.

contributor bits

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1OUcpgj
http://bit.ly/1UaSTgQ
http://bit.ly/1Vq7o5z
http://bit.ly/25r79gR
http://bit.ly/1sEZbiA
http://bit.ly/1seZvV8
mailto:hackerbits%40rkoutnik.com?subject=
mailto:hackerbits%40rkoutnik.com?subject=
http://websequencediagrams.com
http://websequencediagrams.com
http://bit.ly/1X8tgUT
http://bit.ly/27X0bz8
http://bit.ly/1X3Wpki
http://bit.ly/1X3Wpki
http://bit.ly/25twlQq
http://bit.ly/25twlQq
http://bit.ly/1smHuo2
http://bit.ly/1smHuo2
http://bit.ly/24b3tdj
http://bit.ly/25r42pb
http://bit.ly/1WQpTBb

5hacker bits

Ray Li
Curator

Ray is a software en-
gineer and data en-
thusiast who has been
blogging at rayli.net
for over a decade. He
loves to learn, teach
and grow. You’ll usu-
ally find him wrangling
data, programming and
lifehacking.

Maureen Ker
Editor

Maureen is an editor,
writer, enthusiastic
cook and prolific collec-
tor of useless kitchen
gadgets. She is the
author of 3 books and
100+ articles. Her work
has appeared in the
New York Daily News,
and various adult and
children’s publications.

Umer Mansoor
Umer is a software
developer, living in
San Francisco, CA. He
currently works for
Glu Mobile as Platform
Manager, building a
cloud gaming backend.
He previously served as
the Head of Software
for Starscriber where he
built high performance
telecommunications
software. He blogs at
CodeAhoy.com.

Allen Rohner
Allen is the founder of
Rasterize and CircleCI.
He is a Clojure contrib-
utor, and has commits
in clojure.core, contrib,
lein, ring, compojure,
noir, and about a
dozen more libraries.
He blogs at rasterize.io
and you can follow him
on Twitter @arohner.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://rayli.net?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://bit.ly/1U3HdN0
http://bit.ly/22seWG2
http://bit.ly/1UdUcvs
http://bit.ly/1X03HoW

6 hacker bits

Fingerprints are usernames,
not passwords
By DUSTIN KIRKLAND

Interesting

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

7hacker bits

I'm bringing this up again
to highlight the work released
by The Chaos Computer Club,
which has demonstrated how
truly insecure Apple's TouchID
is.

There may be civil liberties
at issue as well. While this piece
is satire, and Apple says that it
is not sharing your fingerprints
with the government, we've been
kept in the dark about such
things before. I'll leave you to
draw your own conclusions on
that one.

But let's just say you're okay
with Apple sharing your fin-
gerprints with the NSA, as I've
already told you, they're not
private at all. You leave them on
everything you touch. And let's

say you're insistent on using fin-
gerprint (biometric) technology
because you can. In that case,
your fingerprints might identify
you, much as your email address
or username identifies you, per-
haps from a list.

I could see some value, per-
haps, in a tablet that I share with
my wife, where each of us have
our own accounts, with indepen-
dent configurations, apps, and
settings. We could each con-
veniently identify ourselves by
our fingerprint. But biometrics
cannot, and absolutely must
not, be used to authenticate
an identity. For authentication,

As one of the maintainers
of eCryptfs, and a long
time Thinkpad owner, I

have been asked many times
to add support to eCryptfs for
Thinkpad's fingerprint readers.

I actually captured this as
a wishlist bug in Launchpad in
August 2008, but upon thinking
about it a bit more, I later closed
the bug as "won't fix" in Feb-
ruary 2009, and discussed in a
blog post, saying:

Hi, thanks so much for
the bug report. I've been
thinking about this quite a
bit lately. I'm going to have
to mark this "won't fix" for
now.

The prevailing opinion
from security profession-
als is that fingerprints
are perhaps a good re-
placement for usernames.
However, they're really not
a good replacement for
passwords.

Consider your laptop...
how many fingerprints of
yours are there on your
laptop right now? As such,
it's about as secret as your
username. You don't leave
your password on your
spacebar, or on your beer
bottle :-)

This Wikipedia entry (al-
though it's about Microsoft
Fingerprint Readers) is
pretty accurate: * http://
en.wikipedia.org/wiki/Mic-
rosoft_Fingerprint_Reader

So, I'm sorry, but I don't
think we'll be fixing this for
now.

you need a password or pass-
phrase. Something that can be
independently chosen, changed,
and rotated. I will continue to
advocate this within the Ubuntu
development community, as I
have since 2009.

Once your fingerprint is
compromised (and, yes, it
almost certainly already is, if
you've crossed an international
border or registered for a driv-
er's license in some US states
and countries), how do you
change it? Are you starting to
see why this is a really bad idea?

There are plenty of inven-
tions that exist, but turned out
to be bad ideas. And I think
fingerprint readers are another
one of those.

This isn't a knock on Apple,
as Thinkpad have embedded
fingerprint readers for nearly a
decade. My intention is to help
stop and think about the place
of biometrics in security. Bio-
metrics can be used as a light-
weight, convenient mechanism
to establish identity, but they
cannot authenticate a person or
a thing alone.

So please, if you have any re-
spect for the privacy your data,
or your contacts' information,
please don't use fingerprints
(or biometrics, in general) for
authentication.

Reprinted with permission of the original author. First appeared on Oct 1, 2013 at blog.dustinkirkland.com.

Biometrics...cannot
authenticate a person
or a thing alone.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1NYSiCw
http://bit.ly/27VUQYI
http://bit.ly/27VUQYI
http://apple.co/1VqbDhJ
http://bit.ly/1U5ONGU
http://bit.ly/1U5ONGU
http://bit.ly/1XWHJSG
http://bit.ly/1X10PbF
http://bit.ly/1sTuvLa
http://bit.ly/1sTuvLa
http://bit.ly/20K8pFf
http://bit.ly/27X0KZB
http://bit.ly/27X0KZB
http://bit.ly/27X0KZB
http://bit.ly/25maGcS

8 hacker bits

I got a very earnest and well-
phrased email from a young
person overseas recently.

Some time in my mind
sounds come that Is that
I am really a developer or
just a good googler. I don't
know what is the answer I
am googler or I am devel-
oper. Scott Please clear on
my mind on this please.

This is a really profound
question that deserved an
answer. Since I only have so
many keystrokes left in my life,
I am blogging my thoughts and
emailing a link.

I've felt the same way some-
times when playing a video

game. It'll get hard as I prog-
ress through the levels, but not
crushingly hard. Each level I
squeak by I'll find myself asking,
"Did I deserve to pass that level?
I'm not sure I could do it again."

You get that feeling like
you're in over your head, but
just a bit. Just enough that you
can feel the water getting into
your nose but you're not drown-
ing yet.

First, remember you are not
alone. I think that we grow when
we are outside our comfort
zone. If it's not breaking you
down, it's not building you up.

Second, anything that you
want to be good at is worth
practicing. Do Code Katas. Do a
Project Euler problem every few

weeks, if not weekly.
Third, try programming for a

day without Googling. Then two
days, maybe a week. See how it
feels. Remember that there was
a time we programmed without
copying our work.

Fourth, think about the
problem, deeply. Read about
algorithms, read Programming
Pearls, read about Design
Patterns. Rather than copying
code from Stack Overflow, copy
patterns from the greats.

Fifth, get involved. Go to
User Groups, Nerd Dinners,
meet with others who feel the
same way you do about technol-
ogy. Stretch.

What do you think?

Am I really
a developer

or just a good
Googler?

By SCOTT HANSELMAN

Reprinted with permission of the original author. First appeared at hanselman.com.

Interesting

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1X4HqX8
http://bit.ly/24gGzkO
http://bit.ly/24gGzkO
http://bit.ly/1sD4fUC
http://bit.ly/1TOcc5J
http://bit.ly/1XIYK2u
http://bit.ly/1XIYK2u
http://bit.ly/1TMBRsp
http://bit.ly/1TMBRsp
http://bit.ly/1TMBRsp
http://bit.ly/1TMBRsp
http://bit.ly/1XDitAE
http://bit.ly/1RABJYc

hackerbits.com/mobile

http://hackerbits.com/mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016

10 hacker bits

Programming

Develop the three great
virtues of a programmer:
laziness, impatience, and
hubris
By REGINALD BRAITHWAITE

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

11hacker bits

Laziness and eagerness
In computing, “laziness” is a broad term, generally
referring to not doing any work unless you need
it. Whereas its opposite is “eagerness,” doing as
much work as possible in case you need it later.

Consider this JavaScript:

Now, here’s the question: Does JavaScript
evaluate 2+3? You probably know the answer: Yes
it does. When it comes to passing arguments to a
function invocation, JavaScript is eager, it evalu-
ates all of the expressions, and it does so whether
the value of the expression is used or not.1

If JavaScript was lazy, it would not evaluate
2+3 in the expression ifThen(1 === 0, 2 + 3). So
is JavaScript an “eager” language? Mostly. But not
always! If we write: 1 === 0 ? 2 + 3 : undefined,
JavaScript does not evaluate 2+3. Operators like ?:
and && and ||, along with program control struc-
tures like if, are lazy. You just have to know in
your head what is eager and what is lazy.

And if you want something to be lazy that
isn’t naturally lazy, you have to work around
JavaScript’s eagerness. For example:

JavaScript eagerly evaluates () => 2 + 3, which
is a function. But it doesn’t evaluate the expres-
sion in the body of the function until it is invoked.
And it is not invoked, so 2+3 is not evaluated.

Wrapping expressions in functions to delay
evaluation is a longstanding technique in pro-
gramming. They are colloquially called thunks,
and there are lots of interesting applications for
them.

Generating laziness
The bodies of functions are a kind of lazy thing:
They aren’t evaluated until you invoke the func-
tion. This is related to if statements, and every
other kind of control flow construct: JavaScript
does not evaluate statements unless the code
actually encounters the statement.

Consider this code:
You are doubtless chuckling at its naïveté. Imag-
ine this list was the numbers from one to a bil-
lion – e.g. [1, 2, 3, ..., 999999998, 999999999,
1000000000] – and we invoke:

We get the correct result, but we iterate over
every one of our billion numbers first. Awful!
Small children and the otherwise febrile know that
you can return from anywhere in a JavaScript func-
tion, and the rest of its evaluation is abandoned.
So we can write this:

This version of the function is lazier than the
first: It only does the minimum needed to deter-
mine whether a particular list contains a particular
value.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1X8gYvZ

12 hacker bits

From containing, we can make a similar func-
tion, findWith:

findWith applies a predicate function to lazily
find the first value that evaluates truthily. Unfor-
tunately, while findWith is lazy, its argument is eval-
uated eagerly, as we mentioned above. So let’s
say we want to find the first number in a list that
is greater than 99 and is a palindrome:

It’s the same principle as before, of course, we
iterate through our billion numbers and stop as
soon as we get to 101, which is greater than 99 and
palindromic.

But JavaScript eagerly evaluates the arguments
to findWith. So it evaluates isPalindromic, gt(99))
and binds it to predicate, then it eagerly evaluates
billion and binds it to list.

Binding one value to another is cheap. But
what if we had to generate a billion numbers?

NumbersUpTo(1000000000) is eager, so it makes
a list of all billion numbers, even though we only
need the first 101. This is the problem with lazi-
ness: We need to be lazy all the way through a
computation.

Luckily, we just finished working with genera-
tors2 and we know exactly how to make a lazy list
of numbers:

Generators yield values lazily. And findWith
searches lazily, so we can find 101 without first
generating an infinite array of numbers. JavaScript
still evaluates Numbers() eagerly and binds it to
list, but now it’s binding an iterator, not an array.
And the for (const element of list) { ... } state-
ment lazily takes values from the iterator just as it
did from the billion array.

The sieve of Eratosthenes
We start with a table of numbers (e.g., 2, 3, 4, 5,
. . .) and progressively cross off numbers in the
table until the only numbers left are primes. Spe-
cifically, we begin with the first number, p, in the
table, and:

1. Declare p to be prime, and cross off all the
multiples of that number in the table, start-
ing from p squared, then;

2. Find the next number in the table after p
that is not yet crossed off and set p to that
number; and then repeat from step 1.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

13hacker bits

Here is the sieve of Eratosthenes, written in eager
style:

Let’s take a pass at writing the sieve of Eratos-
thenes in lazy style. First off, a few handy things
we’ve already seen in this blog, and in JavaScript
Allongé:

With those in hand, we can write a generator
that maps an iterable to a sequence of values with
every nth element changed to null:3

That’s the core of the “sieving” behaviour:
Take the front element of the list of numbers, call
it n, and sieve every nth element afterwards.

Now we can apply nullEveryNth recursively:
Take the first unsieved number from the front
of the list, sieve its multiples out, and yield the
results of sieving what remains:

With sieve in hand, we can use range to get a
list of numbers from 2, sieve those recursively,
then we compact the result to filter out all the nulls,
and what is left are the primes:

Besides performance, did you spot the full-on
bug? Try running it yourself, it won’t work! The
problem is that at the last step, we called com-
pact, and compact is an eager function, not a lazy
one. So we end up trying to build an infinite list of
primes before filtering out the nulls.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25tsvXI
http://bit.ly/1OUcpgj
http://bit.ly/1OUcpgj

14 hacker bits

We need to write a lazy version of compact:

And now it works!

When we write things in lazy style, we need
lazy versions of all of our usual operations. For
example, here’s an eager implementation of
unique:

Naturally, we’d need a lazy implementation if
we wanted to find the unique values of lazy itera-
tors:

And so it goes with all of our existing opera-
tions that we use with lists: We need lazy versions
we can use with iterables, and we have to use the
lazy operations throughout: We can’t mix them.

It comes down to types
This brings us to an unexpected revelation.

Generators and laziness can be wonderful. Ex-
citing things are happening with using generators
to emulate synchronized code with asynchronous
operations, for example. But as we’ve seen, if we
want to write lazy code, we have to be careful to
be consistently lazy. If we accidentally mix lazy
and eager code, we have problems.

This is a symmetry problem. And at a deeper
level, it exposes a problem with the “duck typ-
ing” mindset: There is a general idea that as long
as objects handle the correct interface – as long
as they respond to the right methods – they are
interchangeable.

But this is not always the case. The eager and
lazy versions of compact both quack like ducks that
operate on lists, but one is lazy and the other is
not. “Duck typing” does not and cannot capture
difference between a function that assures lazi-
ness and another that assures eagerness.

Many other things work this way, for example
escaped and unescaped strings. Or obfuscated
and native IDs. To distinguish between things that
have the same interfaces, but also have semantic
or other contractual differences, we need types.

We need to ensure that our programs work
with each of the types, using the correct oper-
ations, even if the incorrect operations are also
“duck compatible” and appear to work at first
glance.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/22u57rd

15hacker bits

The full source

Reprinted with permission of the original author and raganwald.com.

Notes
1 A few people have pointed out that a sufficiently smart
compiler can notice that 2+3 involves two constants and
a fixed operator, and therefore it can be compiled to 5
in advance. JavaScript does not necessarily perform this
optimization, but if it did, we could substitute something like
x + y and get to the same place in the essay.

2 “Programs must be written for people to read, and only
incidentally for machines to execute.”

3 This is the simplest and most naïve implementation that
is recognizably identical to the written description. In The
Genuine Sieve of Eratosthenes, Melissa E. O’Neill describes
how to write a lazy functional sieve that is much faster than
this implementation, although it abstracts away the notion of
crossing off multiples from a list.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1TR6JrI
http://bit.ly/1TSqRe8
http://bit.ly/1TSqRe8
http://bit.ly/24gOBtW
http://bit.ly/24gOBtW
http://bit.ly/1UoucjT
http://bit.ly/1UoucjT

16 hacker bits

Programming

Hi everyone, I am a forty-two
year old self-taught devel-
oper, and this is my story.

A couple of weeks ago I
came by the tweet below, and it
made me think about my career,
and those thoughts brought me
back to where it all began for
me (see figure).

I started my career as a
software developer at precisely
10am, on Monday October 6th,
1997, somewhere in the city
of Olivos, just north of Buenos
Aires, Argentina. The moment
was Unix Epoch 876142800. I
had recently celebrated my 24th
birthday.

Being a developer after 40
By ADRIAN KOSMACZEWSKI

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25rfbTH
http://bit.ly/1VlWePe
http://bit.ly/1VlWePe
http://bit.ly/20K7CUH
http://bit.ly/1P2pWI3

17hacker bits

The world in 1997
The world was a slightly differ-
ent place back then.

Websites did not have cookie
warnings. The future of the
web was portals like Excite.
com. AltaVista was my preferred
search engine. My e-mail was
kosmacze@sc2a.unige.ch, which
meant that my first personal
website was located in http://
sc2a.unige.ch/~kosmacze.

We were still mourning Lady
Diana. Steve Jobs had taken
the role of CEO and convinced
Microsoft to inject $150 million
into Apple Computer. Digital
Equipment Corporation was
suing Dell. The remains of Che
Guevara had just been brought
back to Cuba. The fourth season
of “Friends” had just started.
Gianni Versace had just been
murdered in front of his house.
Mother Teresa, Roy Lichtenstein
and Jeanne Calment (the world’s
oldest person ever) had just
passed away. People were play-
ing Final Fantasy 7 on their Play-
Station like crazy. BBC 2 started
broadcasting the Teletubbies.
James Cameron was about to
release Titanic. The Verve had
just released their hit “Bitter
Sweet Symphony” and then had
to pay most of the royalties to
the Rolling Stones.

Smartphones looked like
the Nokia 9000 Communicator;
they had 8 MB of memory, a 24
MHz i386 CPU and run the GEOS
operating system.

Smartwatches looked like the
CASIO G-SHOCK DW-9100BJ. Not
as many apps but the battery life
was much longer.

IBM Deep Blue had defeated
Garry Kasparov for the first time
in a game of chess.

A hacker known as “_eci”
published the C code for a
Windows 3.1, 95 and NT ex- Excite in 1997, courtesy of the Internet Archive

ploit called “WinNuke,” a deni-
al-of-service attack on TCP port
139 (NetBIOS) that causes a Blue
Screen of Death.

Incidentally, 1997 is also
the year Malala Yousafzai, Chloë
Grace Moretz and Kylie Jenner
were born.

Many film storylines take
place in 1997, to name a few:
Escape from New York, Predator
2, The Curious Case of Benjamin
Button, Harry Potter and the
Half-Blood Prince, The Godfather
III and according to Terminator
2: Judgement Day, Skynet be-
came self-aware at 2:14 am on
August 29, 1997. That did not
happen; however, in an interest-
ing turn of events, the domain
google.com was registered on
September 15th that year.

We were two years away
from Y2K and the media was
starting to get people nervous
about it.

My first developer job
My first job consisted of writing
ASP pages in various editors,
ranging from Microsoft Front-
Page, to HotMeTaL Pro to Edit-
Plus, managing cross-browser
compatibility between Netscape
Navigator and Internet Explorer
4, and writing stored procedures
in SQL Server 6.5 powering a
commercial website published in
Japanese, Russian, English and
Spanish — without any consistent
UTF-8 support across the soft-
ware stack.

The product of these efforts
ran in a Pentium II server hosted
somewhere in the USA, with a
stunning 2 GB hard disk drive
and a whopping 256 MB of RAM.
It was a single server running
Windows NT 4, SQL Server 6.5
and IIS 2.0, serving around ten
thousand visitors per day.

My first professional pro-
gramming language was this
mutant called VBScript, and of

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25nyXPL
http://bit.ly/25nyXPL
http://bit.ly/1TMRLGm
http://bit.ly/1TMRLGm
http://cnet.co/1TMubaL
http://bit.ly/1NT1PuR
http://bit.ly/1NT1PuR
http://bit.ly/24caF8V
http://bit.ly/24f2AjW
http://bit.ly/1sX2MsY
http://bit.ly/25tnoKD
http://bit.ly/25nzGAs
http://bit.ly/1TGTPtU
http://bit.ly/1TGTPtU
http://onforb.es/1THgwya
http://imdb.to/1THh7Qx
http://bit.ly/1PchaXX
http://bit.ly/1PchaXX
http://bit.ly/1RCCqjV
http://bit.ly/1OS32h0
http://bit.ly/1Z6aB9u
http://bit.ly/1Z6aB9u
http://bit.ly/1TSttJc
http://bit.ly/1RBo0jW
http://imdb.to/1Vmi6dj
http://imdb.to/1Vmi6dj
http://bit.ly/1OUNlFG
http://imdb.to/1XDhr7D
http://imdb.to/1qW4oBe
http://imdb.to/1qW4oBe
http://imdb.to/1sX4B9s
http://imdb.to/1sX4B9s
http://imdb.to/1simK0L
http://imdb.to/1simK0L
http://imdb.to/1OXXktX
http://imdb.to/1OXXktX
http://imdb.to/25w02nv
http://imdb.to/25w02nv
http://bit.ly/1Z8je3s
http://bit.ly/24ePWS6
http://bit.ly/24ePWS6
http://bit.ly/1Uc3zeZ
http://bit.ly/1Z5QQz2
http://bit.ly/1Z5QQz2
http://bit.ly/1smIIzN
http://bit.ly/25r3DDo
http://bit.ly/25r3DDo
http://bit.ly/1XYIScz
http://bit.ly/1X8i6Q7
http://bit.ly/1RFh2KL
http://bit.ly/1OUcdO0
http://bit.ly/1XZAB8b

18 hacker bits

course a little bit of JavaScript
on the client side, sprinkled with
lots of “if this is Netscape do
this, else do that” because back
then I had no idea how to use
JavaScript properly.

Interestingly, it’s 2016 and
we are barely starting to un-
derstand how to do anything in
JavaScript.

Unit tests were unheard of.
The Agile Manifesto had not
been written yet. Continuous in-
tegration was a dream. XML was
not even a buzzword. Our QA
strategy consisted of restarting
the server once a week, because
otherwise it would crash ran-
domly. We developed our own
COM+ component in Visual J++
to parse JPEG files uploaded
to the server. As soon as JPEG
2000-encoded files started pop-
ping up, our component broke
miserably.

We did not use source con-
trol, not even CVS, RCS or, God
forbid, SourceSafe. Subversion
did not exist yet. Our Joel Test
score was minus 25.

6,776 days
For the past 6,776 days, I had a
cup of coffee in the morning and
wrote code with things named
VBScript, JavaScript, Linux, SQL,
HTML, Makefiles, Node.js, CSS,
XML, .NET, YAML, Podfiles, JSON,
Markdown, PHP, Windows, Dox-
ygen, C#, Visual Basic, Visual
Basic.NET, Java, Socket.io, Ruby,
unit tests, Python, shell scripts,
C++, Objective-C, batch files,
and lately Swift.

In those 6776 days, lots of
things happened; most impor-
tantly, my wife and I got mar-
ried. I quit 6 jobs and was fired
twice. I started and closed my
own business. I finished my Mas-
ter’s degree. I published a few

open source projects, and one
of them landed me an article on
Ars Technica by Erica Sadun her-
self. I was featured in Swiss and
Bolivian TV shows. I watched
live keynotes by Bill Gates and
by Steve Jobs in Seattle and San
Francisco. I spoke at and co-or-
ganised conferences in four con-
tinents. I wrote and published
two books. I burned out twice
(not the books, myself,) and lots
of other things happened, both
wonderful and horrible.

I have often pondered about
leaving the profession altogeth-
er. But somehow, code always
calls me back after a while. I
like to write apps, systems and
software. To avoid burning out, I
have had to develop strategies.

In this talk I will give you
my secrets, so that you too can
reach the glorious age of 40
as an experienced developer,
willing to continue in this pro-
fession.

Advice for the young
at heart
Some simple tips to reach the
glorious age of 40 as a happy
software developer:

1. Forget the hype
The first advice I can give you
all is do not pay attention to
hype. Every year there is a new
programming language, frame-
work, library, pattern, compo-
nent architecture or paradigm
that takes the blogosphere by
storm. People get crazy about
it. Conferences are given. Books
are written. Gartner hype cycles
rise and fall. Consultants charge
insane amounts of money to
teach, deploy or otherwise fuck
up the lives of people in this
industry. The press will support
these horrors and will make

you feel guilty if you do not pay
attention to them.

• In 1997 it was CORBA & RUP.
• In 2000 it was SOAP & XML.
• In 2003 it was Model Driven

Architecture and Software
Factories.

• In 2006 it was Semantic Web
and OLPC.

• In 2009 it was Augmented
Reality.

• In 2012 it was Big Data.
• In 2015…virtual reality?

Bots?

Do not worry about hype.
Keep doing your thing, keep
learning what you were learning,
and move on. Pay attention to
it only if you have a genuine in-
terest, or if you feel that it could
bring you some benefit in the
medium or long run.

The reason for this lies in
the fact that as the Romans said
in the past, nihil novi sub sole
(nothing new under the sun).
Most of what you see and learn
in computer science has been
around for decades, and this
fact is purposely hidden beneath
piles of marketing, books, blog
posts and questions on Stack
Overflow. Every new architec-
ture is just a re-imagination and
a re-adaptation of an idea that
has been floating around for
decades.

2. Choose your galaxy wisely
In our industry, every technology
generates what I call a “galaxy.”
These galaxies feature stars
but also black holes; meteoric
changes that fade in the night;
many planets, only a tiny frac-
tion of which harbour some kind
of life; and lots of cosmic dust
and dark matter.

Examples of galaxies are
.NET, Cocoa, Node.js, PHP,
Emacs, SAP, etc. Each of these

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25mamLo
http://bit.ly/1XW8Ltq
http://bit.ly/1UiYEvE
http://bit.ly/1NYT6HN
http://bit.ly/1TNpAUm
http://bit.ly/1TNpAUm
http://bit.ly/1sTsajp
http://bit.ly/27YVftn
http://bit.ly/1XIVHqW
http://bit.ly/1THfQZM
http://bit.ly/1Uly8lj
http://bit.ly/1VlvjTM
http://bit.ly/1VlvjTM
http://bit.ly/1NYPPs1
http://amzn.to/1RFmYn9
http://gtnr.it/25r6psb
http://bit.ly/24c6z0z
http://bit.ly/1WUCbbZ
http://bit.ly/1U7wVeM
http://bit.ly/1XYA9Ha
http://bit.ly/1XYA9Ha
http://bit.ly/1PbXjbg
http://bit.ly/1PbXjbg
http://bit.ly/1smIyZ5
http://bit.ly/1UmyHeV
http://bit.ly/1XW9xGX
http://bit.ly/1XW9xGX
http://bit.ly/1TGTVqL

19hacker bits

features evangelists, developers,
bloggers, podcasts, conferences,
books, training courses, consult-
ing services, and inclusion prob-
lems. Galaxies are built on the
assumption that their underlying
technology is the answer to all
problems. Each galaxy, thus, is
based on a wrong assumption.

The developers from those
different galaxies embody the
prototypical attitudes that have
brought that technology to life.
They adhere to the ideas, and
will enthusiastically wear the
t-shirts and evangelize others
about the merits of their choice.

Actually, I use the term “gal-
axy” to avoid the slightly more
appropriate if not less controver-
sial term “religion,” which might
describe this phenomenon
better.

In my personal case, I spent
the first ten years of my career
in the Microsoft galaxy, and
the following nine in the Apple
galaxy.

I dare say, one of the biggest
reasons why I changed galaxies
was Steve Ballmer. I got tired
of the general attitude of the
Microsoft galaxy people against
open source software.

On the other hand, I also
have to say that the Apple gal-
axy is a delightful place, full of
artists, musicians and writers
who, by chance or ill luck, hap-
pen to write software as well.

I attended conferences in the
Microsoft galaxy, like the Barce-
lona TechEd 2003, and various
Tech Talks in Buenos Aires,
Geneva or London. I even spoke
at the Microsoft DevDays 2006
in Geneva. The general attitude
of developers in the Microsoft
galaxy is unfriendly, “corporate”
and bound in secrecy, NDAs and
cumbersome IT processes.

The Apple galaxy was to
me, back in 2006, exactly the

opposite; it was full of people
who were musicians, artists and
painters; they would write soft-
ware to support their passion,
and they would write software
with passion. It made all the
difference, and to this day, I
still enjoy tremendously this
galaxy, the one we are in, right
now, and that has brought us all
together.

And then the iPhone came
out, and the rest is history.

So my recommendation
to you is: choose your galaxy
wisely, enjoy it as much or as
little as you want, but keep your
telescope pointed towards other
galaxies, and prepare to make
a hyperjump to other places if
needed.

3. Learn about software
history
This takes me to the next point:
learn how your favorite technol-
ogy came to be. Do you like C#?
Do you know who created it?
How did the .NET project came
to be? Who was the lead archi-
tect? Which were the constraints
of the project and why did the
language turned out to be what
it is now?

Apply the same recipe to any
language or CPU architecture
that you enjoy or love: Python,
Ruby, Java, whatever the pro-
gramming language; learn their
origins, how they came to be.
The same goes for operating
systems, networking technol-
ogies, hardware, anything. Go
and learn how people came up
with those ideas, and how long
they took to grow and mature.
Because good software takes ten
years, you know. (see Figure)

The stories surrounding the
genesis of our industry are fas-
cinating, and will show you two
things: first, that everything is
a remix. Second, that you could

be the one remixing the next
big thing. No, scratch that: you
are going to be the creator of
the next big thing.

And to help you get there,
here is my (highly biased) selec-
tion of history books that I like
and recommend:

• Dealers of Lightning by Mi-
chael A. Hiltzik

• Revolution in the Valley by
Andy Hertzfeld

• The Cathedral and the Ba-
zaar by Eric S. Raymond

• The Success of Open Source
by Steven Weber

• The Old New Thing by Ray-
mond Chen

• The Mythical Man Month by
Frederick P. Brooks Jr.

You will also learn to value
those things that stood the test
of time: Lisp, TeX, Unix, bash,
C, Cocoa, Emacs, Vim, Python,
ARM, GNU make, man pages.
These are some examples of
long-lasting useful things that
are something to celebrate,
cherish and learn from.

4. Keep on learning
Learn. Anything will do. Wanna
learn Fortran? Go for it. Find
Erlang interesting? Excellent.
Think COBOL might be the next
big thing in your career? Fantas-
tic. Need to know more about
Functional Reactive Program-
ming? Be my guest. Design? Of
course. UX? You must. Poetry?
You should.

Many common concepts in
Computer Science have been
around for decades, which
makes it worthwhile to learn old
programming languages and
frameworks; even “arcane” ones.
First, it will make you appreciate
the current state of the industry

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1P501zl
http://bit.ly/1P501zl
http://bit.ly/1U1IvIw
http://bit.ly/1U1IvIw
http://amzn.to/20MaYXq
http://amzn.to/1PbWcsj
http://amzn.to/25tvkYH
http://amzn.to/25tvkYH
http://amzn.to/25w0zpB
http://amzn.to/1UouqHL
http://amzn.to/1XIYNLH
http://bit.ly/1OUN2Lj
http://bit.ly/22u4ZI6
http://bit.ly/1OXYMfW
http://bit.ly/1X05Hh3
http://bit.ly/1UaAgtm
http://bit.ly/22rr4am
http://bit.ly/1NSYJXP
http://bit.ly/22u5Fxl
http://bit.ly/1TOcBoy
http://bit.ly/20K7UuP
http://bit.ly/1NT2BYY
http://bit.ly/1WSIbBU
http://bit.ly/1TKmO2g
http://bit.ly/1TKmO2g
http://bit.ly/1qXaa5R

20 hacker bits

(or hate it, it depends) and sec-
ond, you will learn how to use
the current tools more effective-
ly — if anything, because you
will understand its legacy and
origins.

Tip 1: learn at least one new
programming language every
year. I did not come up with this
idea; The Pragmatic Programmer
book did. And it works.

One new programming lan-
guage every year. Simple, huh?
Go beyond the typical “Hello,
World” stage, and build some-
thing useful with it. I usually
build a simple calculator with
whatever new technology I learn.
It helps me figure out the syn-
tax, it makes me familiar with
the APIs or the IDE, etc.

Tip 2: read at least 6 books
per year. I have shown above a
list of six must-read books; that
should keep you busy for a year.
Here goes the list for the second
year:

• Peopleware by Tom DeMarco
and Tim Lister

• The Psychology of Software
Programming by Gerald M.
Weinberg

• Facts and Fallacies of Soft-
ware Engineering by Robert
L. Glass

• The Design of Everyday
Things by Don Norman

• Agile!: The Good, the Hype
and the Ugly by Bertrand
Meyer

• Rework by Jason Fried and
David Heinemeier Hansson

• Geekonomics by David Rice

(OK, those are seven books.)

Six books per year looks like a
lot, but it only means one every
2 months. And most of the
books I have mentioned in this
presentation are not that long,
and even better, they are out-

standingly well written, they are
fun and are full of insight.

Look at it this way: if you are
now 20 years old, by the age of
30 you will have read over 60
books, and over 120 when you
reach my age. And you will have
played with at least 20 different
programming languages. Think
about it for a second.

Some of the twelve books
I’ve selected for you have been
written in the seventies, others
in the eighties, some in the nine-
ties and finally most of them
are from the past decade. They
represent the best writing I have
come across in our industry.

But do not just read them;
take notes. Bookmark. Write on
the pages of the books. Then
re-read them every so often.
Borges used to say that a bigger
pleasure than reading a book is
re-reading it. And also, please,
buy those books you really like
in paper format. Believe me.
eBooks are overrated. Nothing
beats the real thing.

Of course, please know that

as you will grow old, the num-
ber of things that qualify as
new and/or important will drop
dramatically. Prepare for this. It
is OK to weep silently when you
realise this.

5. Teach
Once you have learnt, teach.
This is very important.

This does not mean that
you should set up a classroom
and invite people to hear your
ramblings (although it would be
awesome if you did!) It might
mean that you give meaningful
answers to questions in Stack
Overflow; that you write a book;
that you publish a podcast
about your favorite technology;
that you keep a blog; that you
write on Medium; that you go
to another continent and set
up programming schools using
Raspberry Pis; or that you help
a younger developer by becom-
ing their mentor (do not do this
before the age of 30, though.)

Teaching will make you
more humble, because it will

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://amzn.to/24ffj6l
http://amzn.to/1NYSr9j
http://amzn.to/1NYSr9j
http://amzn.to/25nz6mx
http://amzn.to/25nz6mx
http://amzn.to/1XIYfp4
http://amzn.to/1XIYfp4
http://amzn.to/1UhKn2w
http://amzn.to/1UhKn2w
http://amzn.to/1WtI1kJ
http://amzn.to/24caWc9
http://bit.ly/1UahGS7

21hacker bits

painfully show you how limited
your knowledge is. Teaching is
the best way to learn. Only by
testing your knowledge against
others are you going to learn
properly. This will also make
you more respectful regarding
other developers and other tech-
nologies; every language, no
matter how humble or arcane,
has its place within the Tao of
Programming, and only through
teaching will you be able to feel
it.

And through teaching you
can really, really make a dif-
ference in this world. Back in
2012 I received a mail from a
person who had attended one
of my trainings. She used to
work as an Adobe Flash devel-
oper. Remember ActionScript
and all that? Well, unsurprisingly
after 12 years of working as a
freelance Flash developer she
suddenly found herself unem-
ployed. Alone. With a baby to
feed. She told me in her mes-
sage that she had attended my
training, that she had enjoyed
it and also learnt something
useful, and that after that she
had found a job as a mobile web
developer. She wrote to me to
say thank you.

I cannot claim that I changed
the world, but I might have
nudged it a little bit, into some-
thing (hopefully) better. This

thought has made every lesson
I gave since then much more
worthwhile and meaningful.

6. Workplaces suck
Do not expect software corpora-
tions to offer any kind of career
path. They might do this in the
US, but I have never seen any
of that in Europe. This means
that you are solely responsible
for the success of your career.
Nobody will tell you “oh, well,
next year you can grow to be
team leader, then manager, then
CTO…”

Not. At. All. Quite the oppo-
site, actually: you were, are and
will be a software developer,
that is, a relatively expensive
factory worker, whose tasks
your managers would be happy
to offshore, no matter what they
tell you.

Do not take a job just for
the money. Software companies
have become sweatshops where
you are supposed to justify your
absurdly high salary with insane
hours and unreasonable expec-
tations. And, at least in the case
of Switzerland, there is no work-
er union to help you if things go
bad. Actually there are worker
unions in Switzerland, but they
do not really care about situ-
ations that will not land them
some kind of media exposure.

Even worse, in most work-

places you will be harassed, par-
ticularly if you are a woman, a
member of the LGBT community
or from a non-Caucasian ethnic
group. I have seen developers
threatened to have their work
visas not renewed if they did not
work faster. I have witnessed
harassment of women and gay
colleagues.

Some parts of our industry
are downright disgusting, and
you do not need to be in Silicon
Valley to live it. You do not need
Medium to read it. You could
experience that right here in
Switzerland. Many banks have
atrocious workplaces. Financial
institutions want you to vomit
code 15 hours a day, even if the
Swiss working laws explicitly
forbid such treatments. Phar-
maceutical companies want
you to write code to cheat test
results and to help them bypass
regulations. Startups want your
skin, working for 18 hours for
no compensation, telling you
bullshit like “because we give
you stock options” or “because
we are all team players.”

It does not matter that you
are Zach Holman and that you
can claim in your CV that you lit-
erally wrote Github from scratch:
you will be fired for the pettiest
of reasons.

It does not matter that the
app brings more than half of
your employer traffic and reve-
nues; the API team will treat you
and your ideas with contempt
and sloppiness.

I have been asked to work
for free by very well-known
people in the industry, some of
them even featured in Wikipedia,
and it is simply appalling. I will
not give out their names, but
I will prevent any junior from
getting close to them, because
people working without ethics
do not deserve anyone’s brain.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1WtIwv2
http://bit.ly/1WtIwv2
http://apple.co/1U7AIsA
http://bit.ly/1smIqZw
http://bit.ly/1smIqZw
http://bit.ly/1TOdQEh

22 hacker bits

Whenever an HR manag-
er tells you “you must do this
(whatever wrong thing in your
frame of reference) because we
pay you a salary,” remember to
answer the following: “you pay
me a salary, but I give you my
brain in exchange, and I refuse
to comply with this order.”

And to top it all, they will put
you in an open space, and for
some reason they will be proud
about it. Open spaces are a can-
cer. They are without a doubt
the worst possible office layout
ever invented, and the least ap-
propriate for software develop-
ment — or any type of brain work
for that matter.

Remember this: the fact that
you understand something does
not imply that you have to agree
to it.

Disobey authority. Say “fuck
you, I won’t do what you tell me”
and change jobs. There are fan-
tastic workplaces out there; not
a lot, but they exist. I have been
lucky enough to work in some
of them. Do not let a bad job kill
your enthusiasm. It is not worth
it. Disobey and move on.

Or, better yet, become inde-
pendent.

7. Know your worth
You have probably heard about
the “10x Software Engineer”

myth, right? Well here is the
thing: it is not a myth, but it
does not work the way you think
it works.

It works, however, from the
employer’s point of view: a “10x
Software Engineer” generates
worth 10 times whatever the
employer pays. That means that
you, she or he gets 100 KCHF
per year, but she or he are actu-
ally creating a value worth over
a million francs. And of course,
they get the bonuses at the
end of the fiscal year, because,
you know, capitalism. Know
your worth. Read Karl Marx and
Thomas Piketty. Enough said.

Keep moving; be like the
shark that keeps on swimming,
because your skills are extreme-
ly valuable. Speak out your sal-
ary, say it out loud, blog about
it, so that your peers know
how much their work is worth.
Companies want you to shut
up about that, so that women
are paid 70% of what men are
paid. So speak up! Blog about it!
Tweet it!

I am making 135 KCHF per
year. That was my current sal-
ary. How about you? And you?
The more we speak out, the
less inequality there will be. Any
person doing my job with my
experience should get the same
money, regardless of race, sex,

age or preferred football team.
End of the story. But it is not like
that. It is not.

8. Send the elevator down
If you are a white male, remem-
ber all the privilege you have
enjoyed since birth just because
you were born that way. It is
your responsibility to change
the industry and its bias towards
more inclusion.

It is your duty to send the
elevator down.

Take conscious decisions
in your life. Be aware of your
actions and their effect. Do not
blush or become embarrassed
for changing your opinions. Say
“I’m sorry” when required. Lis-
ten. Do not be a hotshot. Have
integrity and self-respect.

Do not criticize or make
fun of the technology choices
of your peers; for other people
will have their own reasons to
choose them, and they must
be respected. Be prepared to
change your mind at any time
through learning. One day you
might like Windows. One day
you might like Android. I am
actually liking some parts of An-
droid lately. And that is OK.

9. LLVM
Everybody is raving about Swift,
but in reality what I pay more
attention to these days is LLVM
itself.

I think LLVM is the most im-
portant software project today,
as measured in its long-term
impact. Objective-C blocks, Rust
& Swift (the two most loved,
strongly typed and compiled
programming languages in the
2016 StackOverflow developer
survey), Dropbox Pyston, the
Clang Static Analyser, ARC, Goo-
gle Souper, Emscripten, LLVM-
Sharp, Microsoft LLILC, Rubymo-
tion, cheerp, watchOS apps, the

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1TSBqhn
http://bit.ly/1TSBqhn
http://amzn.to/1qTv9X4
http://amzn.to/1Z8j5gv
http://bit.ly/1Uh51jj
http://bit.ly/1Uh51jj
http://bit.ly/1UiZpVu
http://bit.ly/1Uc05cy
http://bit.ly/1Uc05cy
http://bit.ly/27VW46u
http://bit.ly/1Ucppz1
http://bit.ly/1Ucppz1
http://bit.ly/1OVFAzn
http://bit.ly/24gDiln
http://bit.ly/24gDiln
http://bit.ly/1Ry8ohb

23hacker bits

Android NDK, Metal, all of these
things were born out or powered
by LLVM.

There are compilers using
LLVM as a backend for pretty
much all the most important lan-
guages of today. The .NET CLR
will eventually interoperate with
it, and Mono already uses it.
Facebook has tried to integrate
LLVM with HHVM, and WebKit
recently switched from LLVM to
the new B3 JIT JavaScript com-
piler.

LLVM is cross-platform,
cross-CPU-architecture,
cross-language, cross-compil-
er, cross-eyed-tested, free as in
gratis and free as a bird.

Learn all you can about
LLVM. This is the galaxy where
true innovation is happening
now. This is the foundation for
the next 20 years.

10. Follow your gut
I had the gut feeling .NET was
going to be big when I watched
its introduction in June 2000.
I had the gut feeling the iP-
hone was going to be big when
I watched its introduction in
2007.

In both cases people laughed

at my face, literally. In both cas-
es I followed my gut feeling and
I guess things worked out well.

Follow your gut. You might
be lucky, too.

11. APIs are king
Great APIs enable great apps. If
the API sucks, the app will suck,
too, no matter how beautiful the
design.

Remember that chunky is
better than chatty, and that
clients should be dumb; push as
much logic as you can down to
the API.

Do not invent your own se-
curity protocols.

Learn a couple of server-side
technologies, and make sure
Node is one of those.

Leave REST aside and em-
brace Socket.io, ZeroMQ, Rab-
bitMQ, Erlang, XMPP; explore
realtime as the next step in app
development. Realtime is not
only for chat apps. Remove poll-
ing from the equation forever.

Oh, and start building bots
around those APIs. Just saying.

12. Fight Complexity
Simpler is better. Always. Re-
member the KISS principle. And I
do not mean only at the UI level,
but all the way until the deepest
layers of your code.

Refactoring, unit tests, code
reviews, pull requests, all of
these tools are at your disposal
to make sure that the code you
ship is the simplest possible
architecture that works. This is
how you build resilient systems
for the long term.

Conclusion
The most important thing to
remember is that your age does
not matter.

One of my sons said to me,
“Impossible, Dad. Mathe-
maticians do all their best
work by the time they’re
40. And you’re over 80. It’s
impossible for you to have
a good idea now.”

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1TGTlcP
http://apple.co/20Q06HZ
http://bit.ly/1Z6bIGl
http://bit.ly/1TGSR6j
http://bit.ly/24gG1LH
http://bit.ly/24gG1LH
http://bit.ly/1TOciKx
http://bit.ly/1TOciKx
http://bit.ly/1TOciKx
http://bit.ly/25nv8dt
http://bit.ly/1siXojo
http://bit.ly/1TPKRy7
http://bit.ly/1TPKRy7
http://econ.st/24bz6nd

24 hacker bits

If you’re still awake and
alert mentally when you’re
over 80, you’ve got the ad-
vantage that you’ve lived a
long time and you’ve seen
many things, and you get
perspective. I’m 86 now,
and it’s in the last few
years that I’ve had these
ideas. New ideas come
along and you pick up bits
here and there, and the
time is ripe now, whereas
it might not have been ripe
five or 10 years ago.

Michael Atiyah
Fields Medal and Abel Prize win-
ner Mathematician, quoted in a
Wired article.

As long as your heart tells
you to keep on coding and
building new things, you will be
young, forever.

In 2035, exactly 19 years
from now, somebody will give
a talk at a software conference
similar to this one, starting like
this: “Hi, I am 42 years old, and
this is my story.”

Hopefully one of you will
be giving that presentation;
otherwise, it will be an AI bot.

You will provide some anecdotal
facts about 2016, for example
that it was the year when Da-
vid Bowie, Umberto Eco, Gato
Barbieri and Johan Cruyff passed
away, or when SQL Server was
made available in Linux, or
when Google AlphaGo beat a Go
champion, or when the Panama
Papers and the Turkish Citizen-
ship Database were leaked the
same day, or when Google con-
sidered using Swift for Android
for the first time, or as the last
year in which people enjoyed
this useless thing called privacy.

We will be three years away

from the Year 2038 Problem and
people will be really nervous
about it.

Of course I do not know
what will happen 19 years from
now, but I can tell you three
things that will happen for sure:

1. Somebody will ask a
question in Stack Overflow
about how to filter email
addresses using regular
expressions.

2. Somebody will release a
new JavaScript framework.

3. Somebody will build some-
thing cool on top of LLVM.

And maybe you will remember
this talk with a smile.

Thank you so much for your
attention. This is the talk I gave
at App Builders Switzerland on
April 25th, 2016.

Reprinted with permission of the original author. First appeared at medium.freecodecamp.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1P8RfAg
http://bit.ly/24c6GJz
http://bit.ly/24c6GJz
http://bit.ly/1U7AhP4
http://bit.ly/1TKmxMQ
http://bit.ly/1TKmxMQ
http://bit.ly/1NVGq4s
http://bit.ly/27VenbU
http://bit.ly/1sgvtAq
http://bit.ly/1TQFONN
http://bit.ly/1TQFONN
http://185.100.87.84/
http://185.100.87.84/
http://bit.ly/22rs0vu
http://bit.ly/22rs0vu
http://bit.ly/22rs0vu
http://bit.ly/1WUEATO
http://bit.ly/1Rwvm8y
http://bit.ly/1X4HDJW

25hacker bits

day. The ones I find most inter-
esting are Daring Fireball, Apple
World Today, All About Micro-
soft, The Monday Note, asymco,
NSHipster, Presentation Zen and
Rands in Repose. I also enjoy
Swift and iOS newsletters, such
as Dave Verwer's iOS Dev Week-
ly, Natasha Murashev's Natasha
The Robot and This Week in
Swift.

Do you have an Internet re-
source that you recommend,
such as Google Docs? Why do
you recommend it?

I'm a heavy iCloud user. Lately it
works much better than it used
to and I like the integration with
the iOS and OS X app ecosystem.
I also find Trello very useful.

What is a personal habit that
contributes to your success?

Am I successful? That's a good
question. In any case, I guess
that if I do not enjoy what I'm
doing, I move on. That's all.

If there's one book you'd rec-
ommend, what is it and why?

Ficciones by Jorge Luis Borges.
An absolutely astonishing col-
lection of short stories that has
something for everyone.

Where can people find out
more about you?

The article I published in Medi-
um gives a fair amount of details
about me. Medium: @akosma,
Twitter: @akosma

Spotlight

But lately I'm more interested on
how these technologies enable
social inclusion and solve actual
problems in society.

What technology has you excit-
ed today?

There are many things that I
keep an eye on, for example
Socket.io, LLVM and also the
latest revisions of C++. But lately
I'm more interested on how
these technologies enable social
inclusion and solve actual prob-
lems in society.

What are 1-2 blogs, pod-
casts, newsletters, etc. that
you use to stay on top of the
fast-changing and ever evolv-
ing industry?

I'm not into podcasts, I'm more
of a reading guy so I have lots of
entries in my RSS reader every

Adrian Kosmaczewski
Adrian is a writer, a software developer and a teacher. He
is the author of two books about mobile software develop-
ment, and has shipped mobile, web and desktop apps for
iOS, Android, Mac OS X, Windows and Linux since 1996.
Adrian holds a Master in Information Technology from the
University of Liverpool.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1qPXEor
http://bit.ly/1X05vOI
http://bit.ly/1X05vOI
http://zd.net/1TIWrtC
http://zd.net/1TIWrtC
http://bit.ly/1TOcoSu
http://bit.ly/22r6Z43
http://bit.ly/1TO2CzN
http://bit.ly/22twwts
http://bit.ly/1OXU6qk
http://bit.ly/1TPKdRe
http://bit.ly/1TPKdRe
http://bit.ly/1sFMqnK
http://bit.ly/1sFMqnK
http://bit.ly/1TOcGsr
http://bit.ly/1TOcGsr
http://apple.co/1UkVE1U
http://bit.ly/1UdWef8
http://amzn.to/1TNTr0a
http://bit.ly/1seZsJb
http://bit.ly/1Uh4y0p

26 hacker bits

Opinion

By RANDALL KOUTNIK

Implementers, solvers,
and finders

I was talking to a former stu-
dent when he brought up an
article written by a well-sea-

soned programmer regretting
his choice of career. This fellow
had rejected the management
path in order to stay in the
coding trenches and as a result,
ended up in some absolutely
crummy situations. He writes
about management antipattern

after antipattern that left him
sitting with the bill.

Hearing about a dismal
career like that is depressing. So
much so, that my student who
previously was one of my most
enthusiastic programmers had
turned morose. Who’d blame
him? All he had to look forward
to was a life filled with misery
caused by other folks’ poor

decision-making skills. Learn-
ing that sub-par managers will
dictate your whole life is almost
as traumatizing as dealing with
said managers.

To make matters worse,
his team had recently mulled
over their future career plans at
lunch. None of them anticipated
that they’d remain program-
mers. As soon as they could,

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1sC52Fe
http://bit.ly/1sC52Fe
http://bit.ly/1sC52Fe
http://bit.ly/1sC52Fe

27hacker bits

with this goal – and succeeded,
eventually earning the rank of a
lead position (before the com-
pany ultimately collapsed, but
that’s another story).

During my last job hunt, I
had two fantastic options:

• Leader, with a few con-
straints

• Not Leader, with full auton-
omy

This was it! I could capital-
ize on my previous work and
finally…not program. Something
was wrong here – what did I
ultimately want? When it came
down to it, I wanted to write
code. I love building things and
I didn’t want to give that up.
Sure, startups mean doing a
little bit of everything but the
success case everyone’s working
towards means outsourcing all
of your own work until you’ve
forgotten all of the shortcuts to
your favorite IDE. I chose the lat-
ter job, the one that would grant
me the most autonomy.

Implementers,
solvers, and finders
Could it be that we’ve utterly
mischaracterized how career
development as a program-
mer should work? The guiding
trifecta of Junior, Regular, and
Senior is incredibly easy to game
(a misguided company offered
me a senior level job just under
a year into my career). A word
ceases to be useful when we
can’t agree on its purpose – title
relativism means a given title
can convey entirely separate
messages to different compa-
nies. Which is more impressive,
a “Senior UI Engineer” or a “Ja-
vascript Architect?”

If we’re to escape this situa-

tion where fantastic fanatic pro-
grammers can’t see themselves
programming in three years, we
need to couple our words to real
world meaning. Instead of the
Jr/Sr nonsense (which already
reeks of the years-of-experience
antipattern), why don’t we talk
about what the job will actually
entail? Let’s define your job title
by how much autonomy your
day-to-day work gives you.

Do you find that most of
your time is simply closing
tickets, and your team rarely
considers your input? Your title
is Solution Implementer.

Are you given general prob-
lems and left to your own devic-
es on how they’re fixed? When
brainstorming, is your input
considered by your teammates?
You’re working as a Problem
Solver.

Are you given near-total
autonomy in choosing what you
work on? Can you tell your boss
“That’s an interesting idea but
my time would be better spent
elsewhere” (and not get fired
on the spot)? You’re a Problem
Finder.

Our regretful fellow author
of the post spent most of his
time as an Implementer. People
(often non-technical) assigned
concrete tasks without room for
feedback or innovation. Every
one of his stories shares the
same problem: He wasn’t given
autonomy.

I don’t mean to say that
everyone who’s at the Solution
Implementer level should imme-
diately quit their jobs, or that
life as an Implementer de facto
means you’re a bad program-
mer.

Beginning programmers who
are still learning the basic con-
cepts will thrive as Implementers
if handed solutions matching
the challenge level they’re

they were going to take the leap
into management, avoiding what
our blogging friend referred to
as his “biggest regret”.

I’ve talked to a lot of people
who live, eat and breathe pro-
gramming. It’s hard to stand
next to them without hearing
about the latest library or tool
they’re checking out, and how
what they’re building is awe-
some and is going to revolu-
tionize everything (or is useless
but _ aren’t neural networks
cool!?!_). Almost all of them
echoed the earlier sentiment –
programming as a profession
wasn’t for them.

How could this be? A group
of people, granted the ability to
do what they love for great pay
and perks, all wanting to move
on? It all comes down to:

People want to make deci-
sions rather than execute
them.

Turns out science agrees on
this: People want power because
they want autonomy. Most of
the time, folks desire to move
up the career ladder not for pay,
better title, or keys to the exec-
utive washroom (are those still
a thing?) but because they wish
to be able to exercise greater
autonomy over their lives.

Psychologist Daniel Pink
agrees — he’d found that the
three qualities that contribute
most to workplace satisfaction
and overall productivity are au-
tonomy, mastery and purpose.

I too, was bitten by the
“management = autonomy” bug.
My original career goal was
to rise up in the ranks of pro-
grammers, eventually crowning
myself king of my own startup,
the ultimate in autonomy (or so
I thought). I carefully chose the
work I did at each job to align

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1UkVbwS
http://theatln.tc/1NX1tDL
http://theatln.tc/1NX1tDL
http://bit.ly/1UoqYgi
http://bit.ly/1UoqYgi

28 hacker bits

willing to accept. The mere task
of implementing something
provides plenty of opportunities
to learn (in fact, I’d say it’s the
only way to truly understand
something). Beginners of all skill
levels will get lost if thrown at a
problem with too big of a scope
for them to handle.

One can’t remain a beginner
forever. There needs to be a way
for these implementers to level
up. We, as a community, don’t
have an agreed-upon way to
take budding programmers and
hand them continually-increas-
ing challenges. The standard
practice in leveling up seems
to be to quit and start hunting
for a new job at the next level.
This is why my standing advice
to beginning programmers is to
find a new job after six months
(hopefully in the same compa-
ny).

It can be difficult to tell if a
company is actually looking for
a Problem Solver or the work is
just Implementation in disguise.
One org smell to look out for
is the ratio of programmers to
project/product managers. I’ve
fallen for this, thinking I’d get to
take charge of a frontend when
what they really wanted me to
do was slog through 17,000
issues in JIRA. Determining the
true culture of a company is
troublesome, but you can start
by interviewing your interviewer.

On the other hand, if our
programmer does land that Solv-
er job, they will start spreading
their wings beyond the basics.
At this point their opinion starts
to mean something, and the
challenges they face take on a
new shape as their sphere of
responsibility grows.

There’s an entirely new set

of skills to learn – suddenly
effective communication means
a whole lot more than “follow-
ing the JIRA process correctly”.
Solvers need to learn how to
evangelize their favorite solu-
tions and defend them against
other Solvers who have different
preferences.

Solver is an enormous
growth area and the typical
Solver may spend years making
mistakes, learning, and causing
new catastrophes until their
knowledge grows to the point
where they’re ready to make the
final leap to Finder.

Mid-size startups (> 50 peo-
ple) are a great place for Solvers
— there’s plenty of problems
begging for solutions and often
Solvers can branch out into
areas that would be verboten
to them at a larger, established
company. As the startup grows,
so does their responsibility —
this is a common way for a Solv-
er to grow into a Finder. Another
case is for a company to create
fertile ground for Finders and
recruit them directly.

The final stage of program-
mer evolution is the Finder.
These folks are considered
experts in their chosen domain
(and are prudent about others).
Writing Finder job descriptions
is an exercise in futility. As my
boss puts it: “I can’t tell you the
specifics of what you’ll be doing
here because your first task will
be to figure that out.”

A Finder will be able to
anticipate problems before they
happen, usually because they’ve
been in that situation before.
Finders are the canonical “Done
and get things smart” that Steve
Yegge likes to talk about. Empa-
thy is a critical key in a Finder’s

toolbox. Finders need to work
with a variety of other folks
without swinging the “I’m smart
and because I said so” hammer
(otherwise they’re Brilliant Jerks).

Finders need autonomy, by
definition. Any job that puts
significant restraints on what a
programmer can and can’t do
is a poor fit for a Finder. Poor-
ly-managed startups love to hire
smart people and then tell them
what to do in precise detail. No
one wins.

My hope is this post will
create shared vocabulary. This
triumvirate of concepts can help
great folks find the job that’s
best for them. A company may
be honestly seeking an Imple-
menter, and effectively com-
municating that to a Solver or
Finder will save both parties a
lot of time.

More importantly, I want pro-
grammers everywhere to realize
that it’s possible to have auton-
omy while still writing code for a
living. Some may find fulfillment
in leadership (I know I do, the
siren song has abated but is not
gone) but plenty of hackers out
there just want to make great
things. There’s hope for us yet!

Postscript: If this article rang
true to you and you feel like
you’re ready to level up, I’d love
to hear from you. What brought
you to your current job? What
changed? How are you looking
for the job that fits you?

Let me know at: isf at rkout-
nik.com.

Reprinted with permission of the original author. First appeared at rkoutnik.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1sVbckF
http://bit.ly/1VnIjbr
http://bit.ly/1VnIjbr
http://bit.ly/1NRSkMu
mailto:isf@rkoutnik.com
mailto:isf@rkoutnik.com
http://bit.ly/1OXUkxU

29hacker bits

Spotlight

(best I've found are on Slack).
The interactive nature means I
can learn about things as well
as get feedback on my current
work. It's the best way to learn
(it's ok to ask dumb questions!).

Do you have an Internet re-
source that you recommend,
such as Google Docs? Why do
you recommend it?

Not really an Internet tool, but
I love git. As a simple commit/
push/merge thing, it works fine
but once you dive into bisect, re-
basing, revert and more, it’s one
of the best developer productivi-
ty tools out there.

What is a personal habit that
contributes to your success?

Ask questions, especially dumb
ones. We get all wrapped up in

our concern to seem smart that
we keep ourselves from making
the effort to learn the things
that'll make us smart.

If there's one book you'd rec-
ommend, what is it and why?

Oh wow, a zillion suggestions
just popped into my head. Ev-
eryone should read The Hitch-
hiker's Guide to the Galaxy and
realize that life isn't as serious
as we make it out to be.

Where can people find out
more about you?

I write at rkoutnik.com
tweet as @rkoutnik and re-
spond to reader email at
blog@rkoutnik.com.

I'm biased to real-time data processing,
so RxJS is my favorite here.

What technology has you excit-
ed today?

I work in JavaScript, so there's a
lot of exciting things going on.
Angular 2 brings improvements
to every area of frontend dev,
compiling lessons learned from
across the spectrum. RxJS and
async iterators bring new power
to some of the most difficult JS
tasks. I'm biased to real-time
data processing, so RxJS is my
favorite here.

What are 1-2 blogs, pod-
casts, newsletters, etc. that
you use to stay on top of the
fast-changing and ever evolv-
ing industry?

I'm subscribed to a few regard-
ing JS/Node but the best tool
I've found for keeping up on
things is joining chat rooms

Randall Koutnik
Randall is a Senior UI Engineer at Netflix and holds a lot of
strong opinions about Star Wars. He'd love to hear from
you via hackerbits@rkoutnik.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1UdUSRv
http://bit.ly/1NT2bBK
http://amzn.to/1WUDRlG
http://amzn.to/1WUDRlG
http://bit.ly/1WtIi79
http://bit.ly/1sC4vDf
mailto:blog%40rkoutnik.com?subject=
http://bit.ly/1NV5WXB
http://bit.ly/1NV5WXB
mailto:hackerbits%40rkoutnik.com?subject=

30 hacker bits

By STEVE HANOV

Interesting

20 lines of code that will
beat A/B testing every time

A/B testing is used far too
often, for something that
performs so badly. It is

defective by design: Segment
users into two groups. Show
the A group the old, tried and
true stuff. Show the B group the
new whiz-bang design with the
bigger buttons and slightly dif-
ferent copy. After a while, take a

look at the stats and figure out
which group presses the button
more often. Sounds good, right?

The problem is staring you
in the face. It is the same dilem-
ma faced by researchers admin-
istering drug studies. During
drug trials, you can only give
half the patients the lifesaving
treatment. The others get sugar

water. If the treatment works,
group B lost out. This sacrifice
is made to get good data. But it
doesn't have to be this way.

In recent years, hundreds of
the brightest minds of modern
civilization have been hard at
work not curing cancer. Instead,
they have been refining tech-
niques for getting you and me

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

31hacker bits

 Epsilon-greedy method

to click on banner ads. It has
been working. Both Google and
Microsoft are focusing on using
more information about visitors
to predict what to show them.
Strangely, anything better than
A/B testing is absent from main-
stream tools, including Google
Analytics, and Google Website
optimizer. I hope to change that
by raising awareness about bet-
ter techniques.

With a simple 20-line change
to how A/B testing works, that
you can implement today, you
can always do better than A/B
testing — sometimes, two or
three times better. This method
has several good points:

• It can reasonably handle
more than two options at
once.. e.g. A, B, C, D, E, F,
G...

• New options can be added or
removed at any time.

But the most enticing part
is that you can set it and forget
it. If your time is really worth
$1000/hour, you really don't
have time to go back and check

how every change you made
is doing and pick options. You
don't have time to write ram-
bling blog entries about how
you got your site redesigned
and changed this and that and it
worked or it didn't work. Let the
algorithm do its job. These 20
lines of code automatically finds
the best choice quickly, and
then uses it until it stops being
the best choice.

The multi-armed
bandit problem
The multi-armed bandit prob-
lem takes its terminology from
a casino. You are faced with a
wall of slot machines, each with
its own lever. You suspect that
some slot machines pay out
more frequently than others.
How can you learn which ma-
chine is the best, and get the
most coins in the fewest trials?

Like many techniques in
machine learning, the simplest
strategy is hard to beat. More
complicated techniques are
worth considering, but they may
eke out only a few hundredths

of a percentage point of perfor-
mance.

One strategy that has been
shown to perform well time
after time in practical problems
is the epsilon-greedy method.
We always keep track of the
number of pulls of the lever and
the amount of rewards we have
received from that lever. 10% of
the time, we choose a lever at
random. The other 90% of the
time, we choose the lever that
has the highest expectation of
rewards.

Why does this work?
Let's say we are choosing a
colour for the "Buy now!" button.
The choices are orange, green,
or white. We initialize all three
choices to 1 win out of 1 try. It
doesn't really matter what we
initialize them too, because the
algorithm will adapt. So when
we start out, the internal test
data looks like this.

def choose():

 if math.random() < 0.1:

 # exploration!

 # choose a random lever 10% of the time.

 else:

 # exploitation!

 # for each lever,

 # calculate the expectation of reward.

 # This is the number of trials of the lever divided by the total reward

 # given by that lever.

 # choose the lever with the greatest expectation of reward.

 # increment the number of times the chosen lever has been played.

 # store test data in redis, choice in session key, etc..

def reward(choice, amount):

 # add the reward to the total for the given lever.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1Uj2Hbl
http://bit.ly/1U5eg3q
http://bit.ly/1U3HG1V
http://bit.ly/1U3HG1V
http://bit.ly/1PbW5Nm
http://bit.ly/1PbW5Nm
http://bit.ly/1P77hL7

32 hacker bits

Then a web site visitor
comes along and we have to
show them a button. We choose
the first one with the highest
expectation of winning. The
algorithm thinks they all work
100% of the time, so it chooses
the first one: orange. But, alas,
the visitor doesn't click on the
button.

Another visitor comes along.
We definitely won't show them
orange, since we think it only
has a 50% chance of working.
So we choose Green. They don't
click. The same thing happens
for several more visitors, and
we end up cycling through the
choices. In the process, we
refine our estimate of the click
through rate for each option
downwards.

But suddenly, someone
clicks on the orange button!
Quickly, the browser makes an
Ajax call to our reward function
$.ajax(url:"/reward?testnam-

e=buy-button"); and our code
updates the results:

When our intrepid web devel-
oper sees this, he scratches his
head. What the F*? The orange
button is the worst choice. Its
font is tiny! The green button is
obviously the better one. All is

lost! The greedy algorithm will
always choose it forever now!

But wait, let's see what hap-
pens if Orange is really the sub-
optimal choice. Since the algo-
rithm now believes it is the best,
it will always be shown. That is,
until it stops working well. Then
the other choices start to look
better.

After many more visits, the
best choice, if there is one, will
have been found, and will be
shown 90% of the time. Here are
some results based on an actual
web site that I have been work-
ing on. We also have an estimate
of the click through rate for
each choice.

Edit: What about the
randomization?
I have not discussed the ran-
domization part. The random-
ization of 10% of trials forces
the algorithm to explore the
options. It is a trade-off between
trying new things in hopes of
something better, and sticking
with what it knows will work.

There are several variations
of the epsilon-greedy strategy.
In the epsilon-first strategy, you
can explore 100% of the time
in the beginning and once you
have a good sample, switch to
pure-greedy. Alternatively, you
can have it decrease the amount
of exploration as time passes.

The epsilon-greedy strategy
that I have described is a good
balance between simplicity and

performance. Learning about the
other algorithms, such as UCB,
Boltzmann Exploration, and
methods that take context into
account, is fascinating, but op-
tional if you just want something
that works.

Wait a minute, why
isn't everybody doing
this?

Statistics is hard for most
people to understand. People
distrust things that they do not
understand, and they especially
distrust machine learning algo-
rithms, even if they are simple.
Mainstream tools don't support
this, because then you'd have
to educate people about it, and
about statistics, and that is
hard. Some common objections
might be:

• Showing the different op-
tions at different rates will
skew the results. (No it
won't. You always have an
estimate of the click through
rate for each choice).

• This won't adapt to change.
(Your visitors probably don't
change. But if you really
want to, in the reward func-
tion, multiply the old reward
value by a forgetting factor).

• This won't handle chang-
ing several things at once
that depend on each-other.
(Agreed. Neither will A/B
testing.)

• I won't know what the click
is worth for 30 days so how
can I reward it?

Reprinted with permission of the original author. First appeared at stevehanov.ca.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25vYEkP

33hacker bits

Spotlight

check the best of Hacker News
to get a sense of new develop-
ments, but this is pure deca-
dence.

Do you have an Internet re-
source that you recommend,
such as Google Docs? Why do
you recommend it?

I run my business through the
spreadsheets in Google Docs.
Google Keep is wonderful for
personal notes. I love Stripe,
because I can watch my money
flow through it.

What is a personal habit that
contributes to your success?

It is not habit, but circumstance
that contributes to my success.
Before having children, I would
waste a lot of time. I read a lot,
but produced little. With three
children, the moment I have

dispersed them all to school and
daycare, I need to be productive,
getting everything I can done
before I get the inevitable call
that one has a fever or a tummy
ache.

If there's one book you'd rec-
ommend, what is it and why?

I recommend two books: The
Willpower Instinct and Predict-
ably Irrational. With the two of
them, you will understand your-
self and other people.

Where can people find out
more about you?

I have written many interesting
tech articles on my blog steve-
hanov.ca. My secret is every
time I write one, I delete one,
and so by now many of them are
good.

I am excited by the incredible
change that everyone has the
Internet in their pockets.

What technology has you excit-
ed today?

I am excited by the incredible
change that everyone has the
Internet in their pockets. I am
always connected to my wife,
and when they are old enough,
my kids, not to mention the sum
total of human knowledge. The
way we interact is changing.
I'm increasingly talking to my
phone, asking it for quick an-
swers. I hate when I have to look
at the screen to do something.

What are 1-2 blogs, pod-
casts, newsletters, etc. that
you use to stay on top of the
fast-changing and ever evolv-
ing industry?

I listen to the Startups For The
Rest of Us podcast to get moti-
vation to work on things. When
I have a rare spare moment, I

Steve Hanov
Steve can be found at various coffee shops in Waterloo,
Ontario, where he writes code and occasionally responds
to emails from customers of his web businesses webse-
quencediagrams.com and zwibbler.com. He has three chil-
dren, one wife, and two birds.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1RCBMTr
http://bit.ly/1sEpMw9
http://bit.ly/1qSupBn
http://bit.ly/20Qo5H0
http://amzn.to/1OXYgyq
http://amzn.to/1OXYgyq
http://amzn.to/1NXJywC
http://amzn.to/1NXJywC
http://bit.ly/1X8dHfY
http://bit.ly/1X8dHfY
http://bit.ly/1NYPIMZ
http://bit.ly/1NYPIMZ
http://bit.ly/25w1dDq
http://bit.ly/25w1dDq
http://bit.ly/1X8tgUT

34 hacker bits

Are Progressive Web Apps
the future of the Internet?

Interview

An interview with Henrik Joreteg

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

35hacker bits

Henrik Joreteg is a PWA developer, consultant, and edu-
cator. He is the author of Human JavaScript and creator
of Ampersand.js, SimpleWebRTC, Talky.io and over 200
JavaScript libraries. He's also spoken at O'Reilly's Fluent-
Conf and FFConf.

Here at Hacker Bits, Progres-
sive Web Apps (PWA) have
consistently come up as a

hot button topic among you, our
readers, and on social media.
But is PWA the real deal? Or is it
just another fad that’ll soon be
forgotten?

To find out, we chat with
with Henrik Joreteg, a PWA
expert who's been working with
his clients to architect, build and
train teams on building perfor-
mant mobile web apps.

In last month's issue of Hacker
Bits, you briefly covered Pro-
gressive Web Apps. Can you
go over the basics and explain
what is a Progressive Web App
(PWA)?

To steal from Alex Russell, it’s
just a website that took all the
right vitamins. It starts life in a
browser tab like any other site,
but can progressively become an
app.

A bit more specifically, if
it meets the technical require-
ments and a user visits the app
again, they’ll be prompted by
the browser if they want to add
it to their home screen. From
that point on, when a user
opens the app from the home
screen it receives the same vi-

sual treatment by the Operating
System as if it were a fully native
app. Meaning it has a home
screen icon, shows a splash
screen when opening, runs from
cache first, etc.

You should also read Al-
ex’s post in which he coins the
phrase.

What are the top 3-4 things
that excite you about PWAs?

1. We now have a way to
write an app that’s treated
as a first-class citizen by
an operating system with
over a billion active users.

2. The tech required to do
this is either supported,
or being built by every
browser vendor other than
Safari.

3. The web can now be made
to be completely reliable.
And network connection
is optional. With Service-
Worker the web can now
implement the same cache-
ing strategies previously
reserved for native apps.
Some people really focus
on the “offline-first” thing.
But it’s not about being
fully functional without a
network connection – it’s
about knowing that when

you tap my app icon, it will
open immediately, every
time, regardless of net-
work conditions.

4. Native push notifications.

What technologies and tools
are used to build PWAs?

1. Application manifest

2. Service Worker

3. HTTPS… yup. Gotta do it
or this stuff won’t work :)

What are the top 3 challenges
preventing PWAs from being
more broadly adopted today?
How far are we along?

1. Awareness. There’s noth-
ing in the way at this point.
I think we’re going to see
them popping up all over
the place in the latter half
of this year.

2. Confusion. These things
are hard to talk about: is it
an app? Is it a web app? Do
users like them?

3. It’s early but I think we’re
going to see an absolute
explosion of them this year
and next.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1UopWks
http://bit.ly/1TR5Pvk
http://bit.ly/25vWamt
http://bit.ly/1Z8elHM
http://bit.ly/1XZyl0J
http://bit.ly/1XZyl0J
http://bit.ly/25vWHES
http://bit.ly/25vWHES
http://bit.ly/1NYNHjR
http://hackerbits.com/may-2016-hj/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016
http://hackerbits.com/may-2016-hj/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016
http://bit.ly/1X8aPzO
http://bit.ly/1X8aPzO
http://bit.ly/1sX2nGQ
http://bit.ly/1sX2nGQ
http://bit.ly/1sX2nGQ
http://bit.ly/1sX2nGQ
http://bit.ly/1U7uE3h
http://bit.ly/1PbUKpK

36 hacker bits

Can you tell us about one of
your experiences building
PWAs for your clients or your-
self? What is working well and
not so well?

I can’t talk specifics about my
current client. But I can say that
the biggest challenge is the
mind-shift required by devel-
opers and product alike. A lot
of product leads don’t know
they want one yet or what it can
mean for them.

Also, PWAs put the web
solidly in the realm of the “app”
in terms of architecture. Frankly,
most web developers are not
used to building apps as fully
self-contained client side appli-
cations. This will take a bit of
time.

Ultimately, the reason I’m
so bullish about this tech is
because of how dramatically it
seems to improve on-boarding
and decrease cost of customer
acquisition.

Rather than showing spam-
my app banners and “please in-
stall our app” door slams, it just
asks the users at a point when
they’re likely to want it and the
“install” is non-existent because
they’re already using the app!

There’s no, “please install”.
Instead of shipping them off to
an app store and hoping they’ll

install your 40mb app and log
back in there, you’ve already
got ‘em. This is why I think
businesses will flock to this tech
once we see more data about
business impact.

Lots of articles spotlight the
ServiceWorker. What is a Ser-
viceWorker, and how does it fit
into the world of PWAs?

ServiceWorker is a separate
JavaScript file that your web app
can “register.” Once registered
it acts as a proxy. All requests
your app makes from that point
on (even to external domains)
go through that ServiceWorker
proxy first! From that script you
can control caches and choose
whether to answer from cache
or network or both, or whatever
else you can dream up.

In addition, ServiceWorker
runs in the background, which
means you can do interesting
things like send it a push notifi-
cation that will be shown to the
user even when the browser is
closed!

Other interesting features
are being added via Service-
Worker too. One such example
is background sync where your
service worker can keep trying a
request in the background until
it resolves. Which means actions

queued up while fully offline
could be re-tried and complet-
ed long after your app and the
browser has been closed.

In the future this script can
be extended to do things like
background geolocation track-
ing, etc. Imagine being able to
build an app like “Runkeeper”
entirely with web tech.

How are data storage and
offline capabilities dealt with
by PWAs?

There’s a new ”CacheStorage“
API (which is also available as
”window.caches“ outside the
worker). This is a Promise-based
API optimized for storing/re-
trieving Request and Response
objects and matching them to
their related URLs.

Since they are technically web
apps, how are search engine
indexing and bookmarking
handled by PWAs?

The story here is still evolving.
But it’s very much like any Single
Page App at this point. If you
want your content indexed it’s
probably best to pre-render
as much of it on the server as
possible. That said, GoogleBot
is pretty great at running JS. But
in reality, most people building
these types of experiences are

The reason I’m so bullish about this
tech is because of how dramatically
it seems to improve on-boarding and
decrease cost of customer acquisition.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

37hacker bits

building things for logged in
users with personalized content
anyway.

All this said, I would not
be in the least bit surprised if
at some point PWAs get pref-
erential treatment by Google’s
search algorithms. I hope this
happens because in my opinion,
this would all but ensure wide
adoption.

What else do you think our
readers should know about
PWAs?

The “offline” word is a distrac-
tion, in my opinion. Frankly, so
is the word “progressive.” This
is about building completely
reliable experiences with web
tech and teaching users they
can rely on web apps for things
they normally think they’d want
native apps for.

What is a parting piece of
advice to our readers looking
to get started learning and
building PWAs?

1. Life will be easier if you
build your PWA as a set of
completely static assets.
It makes it easier to know
what you should cache,
etc.

2. Try writing a ServiceWorker
from scratch to get your
head around it, but then
check out all the goodies
in: https://github.com/
GoogleChrome/sw-tool-
box.

3. Right now all IoT stuff has
a related native app. This
simply will not scale when
there are hundreds of con-
nected devices you want to
interact with. The web will
win here, eventually, and
PWAs are the logical way to
interact with a world full of
connected devices.

Where can people find out
more about you, and what is
the best way for people to con-
nect with you?

I use Twitter as a professional
tool and tweet almost exclusive-
ly about tech stuff. So connect
with me there: @HenrikJoreteg.

Since going independent last
year, I’ve brought my blog back
to life and will post my best
thoughts there.

If you’re interested in my
professional help, you can get in
touch about consulting.

Interview was edited for brevity and clarity.

This is about building
completely reliable experiences
with web tech...

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1TOc6Lk
http://bit.ly/1TOc6Lk
http://bit.ly/1TOc6Lk
http://bit.ly/24gCtsV
http://bit.ly/1RFfiRG
http://bit.ly/25vXfdS
http://bit.ly/25vXfdS

38 hacker bits

19 tips for
everyday git use

By ALEX KRAS

Programming

I’ve been using git full time for the past 4 years,
and I wanted to share the most practical tips
that I’ve learned along the way. Hopefully, it will

be useful to somebody out there.
If you are completely new to git, I suggest

reading Git Cheat Sheet first. This article is aimed
at somebody who has been using git for three
months or more.

Table of contents

1. Parameters for better logging
git log --oneline --graph

2. Log actual changes in a file
git log -p filename

3. Only Log changes for some specific lines in
file
git log -L 1,1:some-file.txt

4. Log changes not yet merged to the parent
branch
git log --no-merges master..

5. Extract a file from another branch
git show some-branch:some-file.js

6. Some notes on rebasing
git pull --rebase

7. Remember the branch structure after a local
merge
git merge --no-ff

8. Fix your previous commit, instead of making
a new commit
git commit --amend

9. Three stages in git, and how to move
between them
git reset --hard HEAD and git status -s

10. Revert a commit, softly
git revert -n

11. See diff-erence for the entire project (not
just one file at a time) in a 3rd party diff tool
git difftool -d

12. Ignore the white space
git diff -w

13. Only “add” some changes from a file
git add -p

14. Discover and zap those old branches
git branch -a

15. Stash only some files
git stash -p

16. Good commit messages

17. Git Auto-completion

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1UaV5VG

39hacker bits

2. Log actual changes in a file
Sample Command: git log -p filename

git log -p or git log -p filename lets you view
not only the commit message, author, and date,
but actual changes that took place in each com-
mit.

Then you can use the regular less search
command of “slash” followed by your search term/

{{your-search-here}} to look for changes to a par-
ticular keyword over time. (Use lower case n to go
to the next result, and upper case N to go to the
previous result).

3. Only log changes for some
specific lines in a file
Sample Command: git log -L 1,1:some-file.txt

You can use git blame filename to find the person
responsible for every line of the file.

18. Create aliases for your most frequently
used commands

19. Quickly find a commit that broke your
feature (EXTRA AWESOME)
git bisect

1. Parameters for better logging
Sample Command: git log --oneline --graph

Chances are, by now you’ve used git log. It sup-
ports a number of command line parameters,
which are very powerful, especially when used
in combination. Here are the ones that I use the
most:

• --author=“Alex Kras"
Only show commits made by a certain author

• --name-only
Only show names of files that changed

• --oneline
Show commit data compressed to one line

• --graph
Show dependency tree for all commits

• --reverse
Show commits in reverse order (Oldest commit
first)

• --after
Show all commits that happened after certain
date

• --before
Show all commits that happened before cer-
tain data

For example, I once had a manager who re-
quired weekly reports submitted each Friday. So
every Friday I would just run: git log --author="-
Alex Kras" --after="1 week ago" --oneline, edit it a
little and send it in to the manager for review.

Git has a lot more command line parameters
that are handy. Just run man git-log and see what
it can do for you.

If everything else fails, git has a --pretty pa-
rameter that lets you create a highly customizable
output.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

40 hacker bits

git blame is a great tool, but sometimes it does
not provide enough information.

An alternative is provided by git log with a -L
flag. This flag allows you to specify particular lines
in a file that you are interested in. Then Git would
only log changes relevant to those lines. It’s kind
of like git log -p with focus.

git log -L 1,1:some-file.txt

4. Log changes not yet merged to
the parent branch

Sample: git log --no-merges master..

If you ever worked on a long-lived branches, with
multiple people working on it, chances are you’ve
experienced numerous merges of the parent
branch (i.e. master) into your feature branch. This
makes it hard to see the changes that took place
on the master branch vs. the changes that have
been committed on the feature branch and which
have yet to be merged.

git log --no-merges master.. will solve the
issue. Note the --no-merges flag indicate to only
show changes that have not been merged yet to
ANY branch, and the master.. option, indicates
to only show changes that have not been merged
to master branch. (You must include the .. after
master).

You can also do git show --no-merges master..
or git log -p --no-merges master.. (output is identi-
cal) to see actual file changes that are have yet to
be merged.

5. Extract a file from another
branch

Sample: git show some-branch:some-file.js

Sometimes it is nice to take a pick at an entire file
on a different branch, without switching to this
branch.

You can do so via git show some-branch-
name:some-file-name.js, which would show the file in
your terminal.

You can also redirect the output to a tempo-
rary file, so you can perhaps open it up in a side
by side view in your editor of choice.

git show some-branch-name:some-file-name.js > dele-
teme.js

Note: If all you want to see is a diff between two
files, you can simple run:

git diff some-branch some-filename.js

6. Some notes on rebasing

Sample: git pull -—rebase

We’ve talked about a lot of merge commits when
working on a remote branch. Some of those com-
mits can be avoided by using git rebase.

Generally I consider rebasing to be an ad-
vanced feature, and it’s probably best left for
another post.

Even the git book has the following to say
about rebasing.

"Ahh, but the bliss of rebasing isn’t without
its drawbacks, which can be summed up in a
single line:

Do not rebase commits that exist outside
your repository.

If you follow that guideline, you’ll be fine. If
you don’t, people will hate you, and you’ll be
scorned by friends and family."

https://git-scm.com/book/en/v2/Git-Branch-
ing-Rebasing#The-Perils-of-Rebasing

That being said, rebasing is not something
to be afraid of either, rather something that you
should do with care.

Probably the best way to rebase is using inter-
active rebasing, invoked via git rebase -i {{some
commit hash}}. It will open up an editor, with
self-explanatory instruction. Since rebasing is out-
side of the scope of this article, I’ll leave it at that.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1sEvGxl
http://bit.ly/1sEvGxl

41hacker bits

One particular rebase that is very helpful is git
pull --rebase.

For example, imagine you are working on a
local version of a master branch, and you made
one small commit. At the same time, somebody
else checked in a week worth of work onto the
master branch. When you try to push your change,
git tells you to do a git pull first, to resolve the
conflict. Being a good citizen that you are, you do
a git pull to end up with the following commit
message auto generated by git.

Merge remote-tracking branch
‘origin/master’

While this is not a big deal and is completely safe,
it does clutter log history a bit.

In this case, a valid alternative is to do a git
pull --rebase instead.

This will force git to first pull the changes, and
then re-apply (rebase) your un-pushed commits on
top of the latest version of the remote branch, as
if they just took place. This will remove the need
for merge and the ugly merge message.

7. Remember the branch structure
after a local merge

Sample: git merge --no-ff

I like to create a new branch for every new bug
or feature. Among other benefits, it helps me get

great clarity on how a series of commits may re-
late to a particular task. If you ever merged a pull
request on github or a similar tool, you will in fact
be able to nicely see the merged branch history in
git log --oneline --graph view.

If you ever try to merge a local branch, into
another local branch, you may notice git has
flattened out the branch, making it show up as a
straight line in git history.

If you want to force git to keep branches his-
tory, similarly to what you would see during a pull
request, you can add a --no-ff flag, resulting in a
nice commit history tree.

git merge --no-ff some-branch-name

8. Fix your previous commit,
instead of making a new commit

Sample: git commit --amend

This one is pretty straightforward. Let’s say you
made a commit and then realized you made a
typo. You could make a new commit with a “de-
scriptive” message typo. But there is a better way.

If you haven’t pushed to the remote branch
yet, you can simply do the following:

1. Fix your typo
2. Stage the newly fixed file via git add some-

fixed-file.js

3. Run git commit --amend which would add the
most recent changes to your latest commit.
It will also give you a chance to edit the com-
mit message.

4. Push the clean branch to remote, when ready

If you are working on your own branch, you
can fix commits even after you have pushed, you

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

42 hacker bits

would just have to do a git push -f (-f stands for
force), which would over-ride the history. But you
WOULD NOT want to do this on a branch that is
being used by other people (as discussed in re-
base section above). At that point, a “typo” com-
mit, might be your best bet.

9. Three stages in git, and how to
move between them

Sample: git reset --hard HEAD and git status -s

As you may already know by now, a file in git can
be in 3 stages:

1. Not staged for commit
2. Staged for commit
3. Committed

You can see a long description of the files
and state they are in by running git status. You
move a file from “not staged for commit” stage to
“staged for commit” stage, by running git add file-
name.js or git add . to add all files at once.

Another view that makes it much easier to
visualize the stages is invoked via git status -s
where -s stand for short (I think), and would result
in an output that looks like that:

Obviously, git status will not show files that
have already been committed, you can use git log
to see those instead. :)

There are a couple of options available to you
to move the files to a different stage.

Resetting the files
There are 3 types of reset available in git. A reset
allows you to return to a particular version in git
history.

1. git reset --hard {{some-commit-hash}}
Return to a particular point in history. All
changes made after this commit are discard-
ed.

2. git reset {{some-commit-hash}}
Return to a particular point in history. All
changes made after this commit are moved
to “not yet staged for commit” stage. Mean-
ing you would have to run git add . and git
commit to add them back in.

3. git reset --soft {{some-commit-hash}}
Return to a particular point in history. All
changes made after this commit are moved
to “staged for commit” stage. Meaning you
only need to run git commit to add them
back in.

This may appear as useless information at
first, but it is actually very handy when you are
trying to move through different versions of the
file.

Common use cases that I find myself using the
reset are below:

1. I want to forget all the changes I’ve made,
clean start
git reset --hard HEAD (most common)

2. I want to edit, re-stage and re-commit files in
some different order
git reset {{some-start-point-hash}}

3. I just want to re-commit past 3 commits as
one big commit
git reset --soft {{some-start-point-hash}}

Check out some files
If you simply want to forget some local changes
for some files, but at the same time want to keep
changes made in other files, it is much easier to
check out committed versions of the files that you
want to forget, via:
git checkout forget-my-changes.js

It’s like running git reset --hard but only on
some of the files.

As mentioned before you can also check out a
different version of a file from another branch or
commit.

git checkout some-branch-name file-name.js and
git checkout {{some-commit-hash}} file-name.js

You’ll notice that the checked out files will
be in a “staged for commit” stage. To move them
back to “un-staged for commit” stage, you would

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

43hacker bits

have to do a git reset HEAD file-name.js. You can
run git checkout file-name.js again, to return the
file to its original state.

Note that running git reset --hard HEAD file-
name.js does not work. In general, moving through
various stages in git is a bit confusing and the
pattern is not always clear, which I hoped to reme-
dy a bit with this section.

10. Revert a commit, softly

Sample: git revert -n

This one is handy if you want to undo a previ-
ous commit or two, look at the changes, and see
which ones might have caused a problem.

Regular git revert will automatically re-com-
mit reverted files, prompting you to write a new
commit message. The -n flag tells git to take it
easy on committing for now, since all we want to
do is look.

11. See diff-erence for the entire
project (not just one file at a
time) in a 3rd party diff tool

Sample: git difftool -d

My favorite diff-ing program is Meld. I fell in love
with it during my Linux times, and I carry it with
me.

I am not trying to sell you on Meld, though.
Chances are you have a diff-ing tool of choice
already, and git can work with it too, both as a
merge and as a diff tool. Simply run the following
commands, making sure to replace Meld with your
favorite diff tools of choice:

After that all you have to do is run git difftool
some-file.js to see the changes in that program
instead of the console.

But some of the diff-ing tools (such as Meld)
support full directory diffs.

If you invoke git difftool with a -d flag, it will
try to diff the entire folder, which could be really
handy at times.

git difftool -d

12. Ignore the white space

Sample: git diff -w or git blame -w

Have you ever re-indented or re-formatted a file,
only to realize that now git blame shows that you
are responsible for everything in that file?

Turns out, git is smart enough to know the
difference. You can invoke a lot of the commands
(i.e. git diff, git blame) with a -w flag, and git will
ignore the white space changes.

13. Only “add” some changes
from a file

Sample: git add -p

Somebody at git must really like the -p flag,
because it always comes with some handy func-
tionality.

In case of git add, it allows you to interactive
select exactly what you want to be committed.
That way you can logically organize your commits
in an easy to read manner.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://bit.ly/1TNpmgc

44 hacker bits

14. Discover and zap those old
branches

Sample: git branch -a

It is common for a large number of remote
branches to just hang around, some even after
they have been merged into the master branch.
If you are a neat freak (at least when it comes to
code) like me, chances are they will irritate you a
little.

You can see all of the remote branches by run-
ning git branch with the -a flag (show all branch-
es) and the --merged flag would only show branch-
es that are fully merged into the master branch.

You might want to run git fetch -p (fetch and
purge old data) first, to make sure your data is up
to date.

If you want to get really fancy, you can get a
list of all the remote branches, and the list of last
commits made on those branches by running:

git for-each-ref --sort=committerdate --for-
mat='%(refname:short) * %(authorname) * %(commit-

terdate:relative)' refs/remotes/ | column -t -s '*'

Unfortunately, there is no easy way (that I
know of) to only show merged branches. So you
might have to just compare the two outputs or
write a script to do it for you.

15. Stash only some files

Sample: git stash —keep-index or git stash -p

If you don’t yet know what git stash does, it
simply puts all your unsaved changes on a “git
stack” of sorts. Then at a later time you can do git
stash pop and your changes will be re-applied. You
can also do git stash list to see all your stashed
changes. Take a look at man git-stash for more
options.

One limitation of regular git stash is that it
will stash all of the files at once. And sometimes it
is handy to only stash some of the files, and keep
the rest in your working tree.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

45hacker bits

Remember the magic -p command? Well it’s
really handy with git stash as well. As you may
have probably guessed by now, it will ask you
to see which chunks of changes you want to be
stashed.

Make sure to hit ? while you are at it to see all
available options.

Another handy trick, for stashing only some of
the files, is to:

1. add the files that you DO NOT want to get
stashed (i.e. git add file1.js, file2.js)

2. Call git stash --keep-index. It will only stash
files that have not been added.

3. Call git reset to un-stage the added files and
continue your work.

16. Good commit messages
A little while ago I came across a great article on
how to write a good commit message. Check it
out here: How to Write a Git Commit Message.

One rule that really stood out for me is, “every
good commit should be able to complete the fol-
lowing sentence”:

When applied, this commit will:
{{ YOUR COMMIT MESSAGE}}

For example:

• When applied this commit will Update README
file

• When applied this commit will Add validation
for GET /user/:id API call

• When applied this commit will Revert commit
12345

17. Git auto-completion
Git packages for some operating systems (i.e.
Ubuntu) come with git auto completion enabled
by default. If your operating system did not come
with one(Mac doesn’t), you can easily enable it by
following these guidelines:

https://git-scm.com/book/en/v1/Git-Basics-Tips-
and-Tricks#Auto-Completion

18. Create aliases for your most
frequently used commands
TLDR; Use git or bash aliases for most commonly
used long git commands

Best way to use Git is via command line, and
the best way to learn the command line is by
doing everything the hard way first (typing every-
thing out).

After a while, however, it might be a good idea
to track down your most used commands, and
create an easier aliases for them.

Git comes with built in aliases, for example
you can run the following command once:

git config --global alias.l "log --oneline --graph"

Which would create a new git alias named l, that
would allow you to run:

git l instead of git log --oneline --graph

Note that you can also append other parameters
after the alias (i.e. git l --author="Alex").

Another alternative, is good old Bash alias.
For example, I have the following entry in my

.bashrc file.
alias gil="git log --oneline --graph", allowing

me to use gil instead of the long command, which
is even 2 character shorter than having to type
git l. :).

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://bit.ly/1qSDc6m
http://bit.ly/25sO9Pf
http://bit.ly/25sO9Pf

46 hacker bits

19. Quickly find a commit that
broke your feature (EXTRA
AWESOME)

Sample: git bisect

git bisect uses divide and conquer algorithm to
find a broken commit among a large number of
commits.

Imagine yourself coming back to work after a
week-long vacation. You pull the latest version of
the project only to find out that a feature that you
worked on right before you left is now broken.

You check the last commit that you’ve made
before you left, and the feature appear to work
there. However, there has been over a hundred of
other commits made after you left for your trip,
and you have no idea which of those commits
broke your feature.

At this point you would probably try to find
the bug that broke your feature and use git blame
on the breaking change to find the person to go
yell at.

If the bug is hard to find, however, you could
try to navigate your way through the commit
history, in attempt to pin point where things went
bad.

The second approach is exactly why git bisect
is so handy. It will allow you to find the breaking
change in the fastest time possible.

So what does git bisect do?
After you specify any known bad commit and
any known good commit, git bisect will split the
in-between commits in half, and check out a new
(nameless) branch in the middle commit to let
you check if your future is broken at that point in
time.

Let's say the middle commit still works. You
would then let git know that via git bisect good
command. Then you only have half of the com-
mits left to test.

Git would then split the remaining commits in
half and into a new branch (again), letting you test
the feature again.

git bisect will continue to narrow down your
commits in a similar manner, until the first bad
commit is found.

Since you divide the number of commits by
half on every iteration, you are able to find your
bad commits in log(n) time (which is simply a “big
O” speak for very fast).

The actual commands you need to run to
execute the full git bisect flow are:

1. git bisect start
let git know to start bisecting.

2. git bisect good {{some-commit-hash}}
let git know about a known good commit
(i.e. last commit that you made before the
vacation).

3. git bisect bad {{some-commit-hash}}
let git know about a known bad commit (i.e.
the HEAD of the master branch). git bisect
bad HEAD (HEAD just means the last commit).

4. At this point git would check out a middle
commit, and let you know to run your tests.

5. git bisect bad
let git know that the feature does not work
in currently checked out commit.

6. git bisect good
let git know that the feature does work in
currently checked out commit.

7. When the first bad commit is found, git
would let you know. At this point git bisect
is done.

8. git bisect reset
returns you to the initial starting point of git
bisect process, (i.e. the HEAD of the master
branch).

9. git bisect log
log the last git bisect that completed suc-
cessfully.

You can also automate the process by provid-
ing git bisect with a script. You can read more
here: http://git-scm.com/docs/git-bisect#_bisect_
run.

Reprinted with permission of the original author. First appeared at alexkras.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1X8tmvI
http://bit.ly/1X8tmvI
http://bit.ly/25pub4l
http://bit.ly/25pub4l
http://bit.ly/1qOjNDB

47hacker bits

Spotlight

member of a Slack room where
a few of my former co-workers
like to share all kinds of web-re-
lated links.

Do you have an Internet re-
source that you recommend,
such as Google Docs? Why do
you recommend it?

I've been pretty happy with
WorkFlowy lately for outlining
my blog ideas and what I want
to write about. I also still use
Evernote for regular notes. I've
been a fan of Gmail for a very
long time. Even though I don't
love PHP, I think Wordpress is
an amazing project with a great
community.

What is a personal habit that
contributes to your success?

Continuous education and curi-
osity. I've only been a full-time

developer for 4 years, so I still
very much enjoy what I do, and
I’m always eager to learn more.
I am a father of two, so I don't
have as much time to invest in
reading and researching various
technologies as I would like. But
I try to take full advantage of
the free time that I have. I listen
to podcasts, watch PluralSight
courses, and read books at night
on my Kindle.

If there's one book you'd rec-
ommend, what is it and why?

For web developers: Effective
JavaScript by David Herman.

Where can people find out
more about you?

My blog at: alexkras.com. You
can also find me on Twitter at
@akras14.

The scale of the web and ability
to reach billions of people
continues to amaze me.

What technology has you excit-
ed today?

I am at the point that I am
beginning to question all tech-
nology and realize that none of
it is perfect. That being said, I
am still very excited about the
web. The scale of the web and
ability to reach billions of people
continues to amaze me.

What are 1-2 blogs, pod-
casts, newsletters, etc. that
you use to stay on top of the
fast-changing and ever evolv-
ing industry?

PluralSight and Coursera for
longer videos and courses. For
podcasts it's JavaScript Jabber,
The Changelog and Data Skep-
tic. I also subscribe to JavaScript
Weekly and Hacker Newsletter.
I also visit Hacker News fairly
often. Last but not least, I am a

Alex Kras
Alex is a Software Engineer by day and Online Marketer by
night. You can find his blog and learn more about him at
alexkras.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1NYTnuk
http://bit.ly/1NT2dd2
http://bit.ly/1sX5PkR
http://amzn.to/1OSyuf4
http://amzn.to/1OSyuf4
http://bit.ly/1WQpTBb
http://bit.ly/1TEy2Dp
http://bit.ly/24fkNhp
http://bit.ly/1U1FtDY
http://bit.ly/1XFKTK5
http://bit.ly/27YXm0s
http://bit.ly/1Ry9vgY
http://bit.ly/1Ry9vgY
http://bit.ly/27XiUdH
http://bit.ly/27XiUdH
http://bit.ly/1TMuBg3
http://bit.ly/1WQpTBb

48 hacker bits

Opinion

By JUSTIN ETHEREDGE

It takes all kinds

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

49hacker bits

After reading a blog post
provocatively called “To-
day I accept that Rails is

yesterday’s software,” I felt the
need to reply. I’m not sure why,
I’m not going to convince any-
one of anything, definitely not
the author of that post.

I want to reply because Rails
is my current platform of choice,
and let’s be honest, seeing a
blog post with a title like that
getting passed around makes
you squirm a little. I think it
made me squirm in a good way,
because it caused me to step
back and evaluate what I’m
doing, and why. Enough with the
back story, on with the show…

It always comes back to
the tools. Everyone blames the
tools. And there is good reason
for that. Tools empower us.
Tools hold us back. Tools excite
us. Sharp tools allow us to stab
ourselves. Dull tools don’t allow
us to get much done. Some
tools are optimized for safety.
Some are optimized for speed.
Some tools are optimized for
flexibility, others push you down
a happy path.

But at the end of the day,
they are tools. The only value
they have is in what you can
create with them. Your tool can
be safe, efficient, shiny, but if
no one uses it, it is just a dead
lump of code.

These tools we have allow
us to create amazing things.
Many of these tools are quite
complex. They try to hide a lot
of that from us, but at the end
of the day, modern web applica-
tions are complex beasts.

Anyone involved in the cre-
ation of a web application knows
that there are so many moving
parts and pieces involved that
it is mind boggling. There is no

way you could fit everything you
need to build a website into a
single framework, even a frame-
work as large as Rails or Django.

And you would never want it
that way, everyone needs to do
something different. You need
a framework that is optimized
for what you’re trying to do. The
framework is there to provide us
with a doctrine and the ecosys-
tem that builds up around it is
what makes it powerful.

What are you
optimizing for?
Everyone is optimizing for
something different. Is Rails a
good choice for every shop? No
way. Is it a good choice for your
shop? I don’t know. What are
you optimizing for? Are you a
big team that is looking for safe
tools that allow you to reliably
refactor and give you a lot of
compile time safety? Then Rails
would be a terrible choice.

Are you a small/medium de-
velopment shop that needs to be
able to stand up and maintain
an application easily while lever-
aging a huge amount of commu-

nity code/knowledge to get that
done? Then a framework like
Rails/Django/Laravel might be
just the thing you need.

Alternatively, maybe all of
your developers know Python,
then go with Django! The whole
point is that you should pick
tools/techniques that fit your
team; don’t just grab the newest
hippest tool off the shelf unless
it solves some very concrete
problems you currently have, or

The framework is there to
provide us with a doctrine
and the ecosystem that builds
up around it is what makes it
powerful.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1UoHjlf
http://bit.ly/1UoHjlf
http://bit.ly/1UoHjlf
http://bit.ly/1TLOHKr
http://rubyonrails.org/doctrine/

50 hacker bits

you are going to feel some pain.
Maybe a lot of pain.

And I don’t mean the kind
of hand-wavy “we can do better”
type problems; I’m talking about
solid technical problems that
you can put your finger on.

Looking for
something better,
or just different?
In the post I mentioned above
it sounds like the author has a
lot of frustration with his tool-
ing. I’m sure that is something
that everyone has experienced.
I can’t speak to his exact issues,
we don’t seem to have many
of the same issues, but that
doesn’t mean they don’t exist.

Just as an anecdote though,
I have often found that devel-
opers working in a framework
for years get a ‘boiling the frog’
moment where they just accept
poor ergonomics in their envi-
ronment for years until someone
new comes along and points

them out, or they just lose their
mind and flip out.

Once you look for a solu-
tion, you’ll often find that it
was a problem in your workflow
all along, because more often
than not, broken tools don’t
stick around in the open source
world. Can’t say the same thing
for other ecosystems though.

The whole point is, don’t
throw out the baby with the
bathwater. These frameworks
are complex. Software is com-
plex. Sometimes they don’t
play well together, but if you’re
running into silly problems with
your tools then you should be
looking for solutions, not throw
everything out and reboot.

If you’re a consultant, then
those types of reboots can more
easily occur, and are often very
lucrative, but they are rarely
good for your clients.

My problems aren’t
your problems
I constantly find myself waxing
to other developers about how
we, as a group, seem to be stuck
in the mindset that all develop-
ers have the same problems.
The tools and frameworks that
Facebook, Twitter, Google and
etc. use must be the best, and
because I want to be the best,
I must use them. Well guess
what, you don’t have the same
problems they do. They have a
virtually unlimited amount of
developer time; you probably
don’t.

Would I ever tell you to not
use Elixir/Phoenix, Node.js,
Revel, Iron, etc…? No, of course
not; I don’t know what your
problems are. But what I would
tell you to do is to thoroughly
evaluate each one based on your
needs. What libraries do you
need? What are you willing to
write yourself? What is the lon-
gevity of the tools? What tools
are available to you for deploy-

...if you’re running into silly
problems with your tools
then you should be looking
for solutions, not throw
everything out and reboot.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

51hacker bits

ment/hosting/management/
troubleshooting? What is the
skill-set of your team?

These are all critical ques-
tions to ask when evaluating
a platform, and if you’re not
asking them then you probably
don’t know what you’re getting
yourself into.

Yesterday? Today?
Tomorrow?
Is Rails yesterday’s software?
Sure. So is PHP. So is C#. So is
Python. So is every web frame-
work that has come before. It is
mature. It doesn’t mean that it
isn’t today’s software, or even
tomorrow’s. It just means that it
has been around for a while.

Are there better platforms
out there? Depends on what
you’re doing. Are there better
frameworks for what we do?
Probably not. But I don’t know
you and your problems; you
have to make these decisions on
your own. Taking ownership of
that is always scarier than listen-

ing to a bunch of loud consul-
tants and bloggers proclaiming
that they have the future in their
pocket.

It takes all kinds
I tend to be harsh sometimes on
developers who always jump on
the new shiny tool, but the real-
ity is that we need those people
(even if I don’t want to have
to maintain their projects). We
need the trailblazers, because if
we didn’t, there wouldn’t be a
trail for the rest of us to follow.

If Rails didn’t have those
people 10 years ago then it
wouldn’t be anywhere near
where it is now. It never would
have been able to push through
those tough early years where
running, deploying, hosting, and
maintaining a Rails app was a
really painful process.

This is where a lot of these
frameworks are now, and that
is exciting. I really hope to
see many of them mature into
stable/reliable platforms and

ecosystems. And one day, for
what I do, another framework
will pop up that will be a better
choice than Rails. And I’ll prob-
ably move on to build amazing
things with that framework.

But guess what, when that
time comes, there will be some-
body writing a blog post telling
me my new platform is old news
and I’ll quietly close my browser,
fight the urge to write a blog
post, and get back to work. Just
like I should have done today.

I tend to be harsh sometimes on
developers who always jump on the
new shiny tool, but the reality is that
we need those people.

Reprinted with permission of the original author. First appeared at codethinked.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1Ry8Vj3

52 hacker bits

By UMER MANSOOR

Programming

When to rewrite
from scratch:
autopsy of a failed software

It was winter of 2012. I was
working as a software develop-
er in a small team at a startup.

We had just released the first
version of our software to a real
corporate customer. The devel-
opment finished right on sched-
ule. When we launched, I was
over the moon and very proud.

It was extremely satisfying to
watch the system process couple
of millions of unique users a day
and send out tens of millions of
SMS messages. By summer, the
company had real revenue. I got
promoted to software manager.
We hired new guys. The compa-

ny was poised for growth. Life
was great.

And then we made a huge
blunder and decided to rewrite
the software. From scratch.

Why we felt that
rewrite from scratch
was needed?
We had written the original
system with a gun to our heads.
We had to race to the finish line.
We weren’t having long design
discussions or review meetings
– we didn’t have time for such

things. We would finish up a
feature, get it tested quickly and
move on to the next. We had a
shared office and I remember
software developers at other
companies getting into lengthy
design and architecture debates
and arguing for weeks over de-
sign patterns.

Despite agile-on-steroids de-
sign, the original system wasn’t
badly written and generally was
well structured. There were
some spaghetti code that carried
over from the company’s previ-
ous proof of concept attempts
that we left untouched because

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1RFgPr5

53hacker bits

it was working and we had no
time. But instead of thinking
about incremental improve-
ments, we convinced ourselves
that we needed to rewrite from
scratch because:

• The old code was bad and
hard to maintain.

• The “monolith java architec-
ture” was inadequate for our
future needs of supporting
a very large operator with
60 million mobile users and
multi-site deployments.

• I wanted to try out new,
shiny technologies like
Apache Cassandra, Virtu-
alization, Binary Protocols,
Service Oriented Architec-
ture, etc.

We convinced the entire organi-
zation and the board and sadly,
we got our wish.

The rewrite journey
The development officially
began in spring of 2012 and we
set end of January, 2013 as the
release date. Because the vision
was so grand, we needed even
more people. I hired consultants
and a couple of remote develop-
ers in India.

However, we didn’t fully an-
ticipate the need to maintain the
original system in parallel with
new development and underes-
timated customer demands. Re-
member I said in the beginning
we had a real customer?

The customer was one of
the biggest mobile operators in
South America and once our sys-
tem had adoption from its users,
they started making demands
for changes and new features.

So we had to continue updat-
ing the original system, albeit

half-heartedly because we were
digging its grave. We dodged
new feature requests from the
customer as much as we can
because we were going to throw
the old one away anyway. This
contributed to delays and we
missed our January deadline. In
fact, we missed it by 8 whole
months!

But let’s skip to the end.
When the project was finally
finished, it looked great and met
all the requirements. Load tests
showed that it can easily sup-
port over 100 million users. The
configuration was centralized
and it had a beautiful UI tool to
look at charts and graphs.

It was time to go and kill the
old system and replace it with
the new one… until the cus-
tomer said “no” to the upgrade.
It turned out that the original
system had gained wide adop-
tion and their users had started
relying on it. They wanted abso-
lutely no risks. Long story short,
after months of back and forth,
we got nowhere. The project
was officially doomed.

Lessons learnt
• You should almost never,

ever rewrite from scratch.
We rewrote for all the wrong
reasons. While parts of the
code were bad, we could
have easily fixed them with
refactoring if we had taken
time to read and understand
the source code that was
written by other people. We
had genuine concerns about
the scalability and perfor-
mance of the architecture
to support more sophisti-
cated business logic, but we
could have introduced these
changes incrementally.

• Systems rewritten from
scratch offer no new value to
the user. To the engineering
team, new technology and
buzzwords may sound cool
but they are meaningless to
customers if they don’t offer
new features that the cus-
tomers need.

• We missed real opportunities
while we were focused on
the rewrite. We had a very
basic ‘Web Tool’ that the
customer used to look at
charts and reports. As they
became more involved, they
started asking for additional
features such as real-time
charts, access-levels, etc.
Because we weren’t interest-
ed in the old code and had
no time anyway, we either
rejected new requests or did
a bad job. As a result, the
customer stopped using the
tool and insisted on reports
by email. Another lost op-
portunity was an opportunity
to build a robust Analytics
platform that was badly
needed.

• I underestimated the effort
of maintaining the old sys-
tem while the new one is in
development. We estimated
3-5 requests a month and
got 3 times as many.

• We thought our code was
harder to read and maintain
since we didn’t use proper
design patterns and prac-
tices that other developers
spent days discussing. It
turned out that most pro-
fessional code I have seen
in larger organizations is 2x
worse than what we had. So
we were dead wrong about
that.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

54 hacker bits

When is rewrite the
answer?
Joel Spolsky made strong ar-
guments against rewrite and
suggests that one should never
do it. I’m not so sure about it.
Sometimes incremental im-
provements and refactoring are
very difficult and the only way
to understand the code is to
rewrite it. Plus software develop-
ers love to write code and create
new things – it’s boring to read
someone else’s code and try to
understand their code and their
‘mental abstractions’. But good
programmers are also good
maintainers.

If you want to rewrite, do it
for the right reasons and plan
properly for the following:

• The old code will still need
to be maintained, in some
cases, long after you release
the new version. Maintaining
two versions of code will
require huge efforts and you
need to ask yourself if you
have enough time and re-
sources to justify that based
on the size of the project.

• Think about losing other op-
portunities and prioritize.

• Rewriting a big system is
riskier than smaller ones.
Ask yourself if you can
incrementally rewrite. We
switched to a new database,
became a ‘Service Oriented
Architecture’ and changed
our protocols to binary, all
at the same time. We could
have introduced each of
these changes incrementally.

• Consider the developers’
bias. When developers want

to learn a new technology or
language, they want to write
some code in it. While I’m
not against it and it’s a sign
of a good environment and
culture, you should take this
into consideration and weigh
it against risks and opportu-
nities.

Michael Meadows made excel-
lent observations on when the
“BIG” rewrite becomes necessary:

Technical

• The coupling of components
is so high that changes to a
single component cannot be
isolated from other compo-
nents. A redesign of a single
component results in a
cascade of changes not only
to adjacent components, but
indirectly to all components.

• The technology stack is so
complicated that future state
design necessitates multi-
ple infrastructure changes.
This would be necessary in a
complete rewrite as well, but
if it’s required in an incre-
mental redesign, then you
lose that advantage.

• Redesigning a component
results in a complete rewrite
of that component anyway,
because the existing design
is so fubar that there’s noth-
ing worth saving. Again, you
lose the advantage if this is
the case.

Political

• The sponsors cannot be
made to understand that
an incremental redesign
requires a long-term com-
mitment to the project.
Inevitably, most organiza-

tions lose the appetite for
the continuing budget drain
that an incremental redesign
creates. This loss of appetite
is inevitable for a rewrite as
well, but the sponsors will
be more inclined to contin-
ue, because they don’t want
to be split between a par-
tially complete new system
and a partially obsolete old
system.

• The users of the system are
too attached to their “current
screens.” If this is the case,
you won’t have the license
to improve a vital part of the
system (the front-end). A
redesign lets you circumvent
this problem, since they’re
starting with something new.
They’ll still insist on getting
“the same screens,” but you
have a little more ammuni-
tion to push back. Keep in
mind that the total cost of
redesigning incrementally
is always higher than doing
a complete rewrite, but the
impact to the organization
is usually smaller. In my
opinion, if you can justify a
rewrite, and you have super-
star developers, then do it.

Abandoning working proj-
ects is dangerous and we wasted
an enormous amount of money
and time duplicating working
functionality we already had, re-
jected new features, irritated the
customer and delayed ourselves
by years. If you are embarking
on a rewrite journey, all the
power to you, but make sure
you do it for the right reasons,
understand the risks and plan
for it.

Reprinted with permission of the original author. First appeared at codeahoy.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/25qcqBY
http://bit.ly/25qcqBY
http://bit.ly/1sD7BXD
http://bit.ly/1sD7BXD
http://bit.ly/1WQYmQe

55hacker bits

Spotlight

ed regularly these days but is
full of extremely useful insight
into software development and
management. To stay up to date
on recent events, I follow Hacker
News and TechCrunch.

Do you have an Internet re-
source that you recommend,
such as Google Docs? Why do
you recommend it?

I couldn't recommend GitHub
more. I've been using it for the
last 6 years and it's such a cool
site and a great community. Re-
cently, I have been pasting lines
of source code into GitHub's
search bar to find answers to my
questions in the form of code.

What is a personal habit that
contributes to your success?

Don't really consider myself

successful :), but I would say
patience, staying hungry for
knowledge and taking full re-
sponsibility for my actions have
helped me grow. I also try to
read at least a couple of books a
month on technical and leader-
ship subjects.

If there's one book you'd rec-
ommend, what is it and why?

It's tough. But if I had to pick
one, I'd go for Peopleware: Pro-
ductive Projects and Teams. It's
an absolute gem and focuses on
building and growing productive
software teams.

Where can people find out
more about you?

I blog on CodeAhoy.com. I'm
also on Twitter @codeahoy.

Machine learning hands down.
Specifically predictive analytics to
forecast the efficacy of mobile campaigns.

What technology has you excit-
ed today?

Machine learning hands down.
Specifically predictive analytics
to forecast the efficacy of mo-
bile campaigns. Google recently
open sourced their machine
learning library, TensorFlow, and
it looks very promising.

What are 1-2 blogs, pod-
casts, newsletters, etc. that
you use to stay on top of the
fast-changing and ever evolv-
ing industry?

I enjoy Scott Hanselman's blog,
even though it is heavy on
Microsoft technologies. I like
his writing style and he cov-
ers interesting topics. I highly
encourage everyone to read
Joel's blog which isn't updat-

Umer Mansoor
Umer Mansoor is a software developer, living in San Fran-
cisco, CA. He currently works for Glu Mobile as Platform
Manager, building a cloud gaming backend. He previously
served as the Head of Software for Starscriber where he
built high performance telecommunications software. He
blogs at CodeAhoy.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1sUJUuD
http://bit.ly/1sUJUuD
http://bit.ly/1XDjdpi
http://bit.ly/1WSIbBU
http://bit.ly/1WSIbBU
http://bit.ly/22seWG2
http://bit.ly/22r6OWn
http://bit.ly/1XZA4Dg
http://bit.ly/1TOcyt1
http://bit.ly/1OUMJjs
http://bit.ly/1U3HdN0
http://bit.ly/22seWG2

56 hacker bits

By ALLEN ROHNER

Programming

Clojure, the good parts

I kid, somewhat. This title is
of course based on Douglas
Crockford's seminal work,

JavaScript, The Good Parts,
which demonstrated that
JavaScript isn't a terrible lan-
guage, if only you avoid the icky
parts.

This is my heavily opinion-
ated guide to what a "good"
production Clojure app looks
like in 2016.

I love Clojure, and I've been
using it pretty much exclusively
since 2009. In the 7 years I've
been using it professionally, a
consensus has started to form

around what 'the good parts' of
Clojure looks like. This article
is my take on what a good app
looks like.

In several places I'll recom-
mend specific libraries. While I
recommend that specific library,
there are often competitor li-
braries with similar functionality,
and most of the time getting the
functionality is more important
than that exact library, so feel
free to substitute, as long as
you're getting the same benefits.

To make my biases explicit,
I mostly write webapps and data
analysis on servers in the cloud.

If you use Clojure in significantly
different applications, these rec-
ommendations might not apply
to you.

Recommendations are split
into several categories: core lan-
guage, libraries and deployment.

I'll also try to avoid uncon-
troversial advice that's been
covered elsewhere, like 'avoid
flatten' and 'don't (def) anywhere
but the top-level', etc.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

57hacker bits

Core
Avoid binding
clojure.core/binding is a code-
smell. Avoid it. In almost all
cases, binding is used to sneak
extra arguments into a func-
tion, reducing its referential
transparency. Instead, pass
all arguments explicitly into a
function, which improves purity
and readability, and avoid issues
with multi-threaded behavior. If
you're dealing with optional ar-
guments, consider an extra arity
of the function with an optional
map.

Avoid agents
It's rare to see a problem that
can be precisely modeled by
agents. Most of the instanc-
es I've used them have been
as hacks to get the specific
multi-threading properties I
want. These days, core.async
can be used to more explicitly
model the desired behavior.

Avoid STM
Like agent, it's rare to see a
problem that can be properly
modeled by STM, in production.
Most production apps will need
to persist data in a database. It's
rare that you can do 'real' work
in an STM commit that shouldn't
also be stored in the DB. Coordi-
nating commits to both STM and

the DB is error prone (The Two
Generals Problem).

Failing to commit to the DB
is a Major Error, while failing to
commit to the STM is typically
less so, because the Clojure pro-
cess can be restarted and loaded
from the DB as the source of
truth. Therefore, the easiest way
to avoid coordination problems
is to just have one source of
truth, the database.

Use atoms, sparingly
By process of elimination,

because I've just recommended
avoiding binding, agent and
STM, that leaves only one core
mutable-state construct, the
atom. Atoms are good, and
should be used, but treat them
like macros: only use them when
they're the only tool available.

Avoid global mutable state
In 2009, I would not have be-
lieved how little global mutable
state is used in my applications.
The vast majority of your state
should be in the DB, or a queue,
or Redis. I'm now at the point
where

(def foo (atom ...))

is a code smell. Most of the time
when using atoms, they should
not be def-ed at the top level.

They should be returned from
constructor functions, or stored
in Component. This means that
you should end up with only one
piece of global state, the sys-
tem.

Avoid pmap
pmap has been subtly broken
since chunked seqs were in-
troduced to the language, and
it's parallelism is not as high as
promised. Use reducers + fork/
join, or core.async's pipeline, or
raw Java concurrency instead.

Avoid metadata
It's not always obvious which
functions will preserve metada-
ta, and which won't. As a Clojure
user since pre-1.0, I've long
stopped caring about "oh, assoc
in 1.x didn't preserve metadata,
but it did in 1.(inc x)". Metadata
is nice to have, for introspection
and working at the repl. As a
bright line though, metadata
should never be used to control
program behavior.

Exercise caution with futures
Futures are great, but they're a
potential footgun. There are a
few things to watch out for.

First, always always always
use java.lang.Thread/setDe-
faultUncaughtExceptionHandler.
It looks something the code
below.

(Thread/setDefaultUncaughtExceptionHandler

 (reify

 Thread$UncaughtExceptionHandler

 (uncaughtException [this thread throwable]

 (errorf throwable "Uncaught exception %s on thread %s" throwable thread))))

(Thread/setDefaultUncaughtExceptionHandler

 (reify

 Thread$UncaughtExceptionHandler

 (uncaughtException [this thread throwable]

 (errorf throwable "Uncaught exception %s on thread %s" throwable thread))))

 java.lang.Thread/setDefaultUncaughtExceptionHandler

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606

58 hacker bits

This guarantees that if your
future throws an exception (and
it will, eventually), that will be
logged and recorded some-
where.

Second, always consider
what you're doing inside the
future, and what would happen
to the system if power was lost
while the future was running.
Imagine you're running an
e-commerce shop, and a cus-
tomer buys something, and then
we send them a confirmation
email in a future. The pseu-
do-code would look like:

(charge-credit-card! user

transaction)

(future (send-confirmation-email

transaction))

If power dies while the future
is running, the customer might
not get their email. Not ideal.
In general, futures are a place
where transactional guarantees
are likely to be lost. In almost
all cases, if you're using a future
for side effects (sending email,
calling 3rd party APIs, etc.),
consider whether that action
should go into a job queue. Use
futures for querying multiple
data-sources in parallel, and use
durable queues for performing
side-effects asynchronously.

Libraries
Some libraries I like, in no

particular order. Note that these
recommendations are about li-
braries to use in apps you write.
I fully agree with Stuart Sierra's
position on library dependen-
cies.

Use Component
Seriously, Component is the
single biggest improvement
you can make to a large Clojure
codebase. It fixes testing. It

fixes app startup. It fixes con-
figuration. It fixes staging vs.
production woes. CircleCI's unit
tests were a mess because of a
huge amount of with-redefs and
binding to get testing behavior
right. If the component under
test used Component, there
would be no need for redefin-
ing at all. Literally thousands of
lines of test fixtures would get
dramatically simpler.

Use Schema
Schema All The Things. As
Emacs tells me, "Code never
lies, comments [and docstrings]
sometimes do". Schema can re-
duce the amount of doc strings
necessary on a function, and
schema-as-doc-strings are more
likely to be correct, because
they're executable (and there-
fore, verified). They completely
eliminate that annoyance in doc
strings where the doc states
'this argument takes a Foo',
without every specifying what a
Foo is. It can be used to handle
input validation from 3rd par-
ties. It can be used to prove your
tests are valid (i.e. passing valid
data to the function under test).

Use core.async
I've mentioned it several times in
this post already, but core.async
should be your default choice
for most complex multi-thread-
ing tasks.

Use Timbre
Clojure programmers love to
make fun of the horrors that are
j.u.logging, logback and SLF4J.
Just dump it all, and use Timbre.
Timbre is Clojure[script]-only
logging, so it has no Java vesti-
gial tails, no XML, and no class-
path weirdness.

Timbre plays well with
Component, so when you have
separate component systems,
one for development, one for

test, etc., they can use different
logging policies, while both are
running in the same process at
the same time. Production sys-
tems log to Splunk or Loggly or
what have you, while tests only
log to stdout, etc.

Use clj-time
clj-time is essential for readable
code that interacts with dates.
Let's say you have a DB query
that takes a start and end date:

(query (-> 7 time/days time/ago)

(time/now))

clj-time wraps Joda, which is
excellent. Libraries for wrapping
Java 8 Instant are probably good
too, I haven't used them though.

Use Clojure.test
Your tests don't need a cutesy
DSL. Your tests especially do not
need eight different cutesy DSL.

Yes, clojure.test has warts.
But it has well-known, im-
mutable warts. Not having new
releases is a feature of testing
libraries.

New testing libraries are fun
and exciting, until you find a
bug in your test library. clojure.
test works, and is battle tested
in a way that no other clojure
testing library is. I've shipped
bugs to production on code that
I thought was tested, because I
didn't understand the way the
testing DSL works. I've seen
infinite loops in macros shipped
by the testing library, because
the DSL was too cutesy and
complex.

Never again, use the sim-
plest thing that solves the
problem.

Don't wrap clj-http
This is kind of a meta point.
Don't use libraries for 3rd party
APIs that provide no value on
top of your HTTP client. For ex-

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1Z8genQ
http://bit.ly/1Z8genQ
http://bit.ly/1Z8genQ
http://bit.ly/1sD59QX
http://bit.ly/1PbWdMM
http://bit.ly/1sX5q1V
http://bit.ly/1THjTW1
http://bit.ly/1THjTW1
http://bit.ly/1THjTW1

59hacker bits

ample, interacting with Stripe's
API is easy. Just write one helper
function that merges in whatever
authentication the service needs,
and then just use clj-http direct-
ly (see above).

That is literally the entire-
ty of what you need from a
stripe API library. A library must
provide significant value over
just writing your own, and most
libraries that wrap HTTP rest
APIs don't. A few provide nice
features, like HTTP pagination,
but that code isn't that difficult
to write. (Actually, it'd be inter-
esting to see if there are REST
patterns that can be abstracted
into a single clj-http higher-or-
der-function library).

Deployment

Build a single artifact
Whatever you're building, re-
leases should consist of a single
artifact. A.jar or .war or docker
container or AMI or whatever
it is, and it should be self-con-
tained, and reproducible. Your
process should not resolve or
download dependencies at run-
time. Starting a production serv-
er should be simple, reliable and
repeatable. Reliable, meaning
"very little chance of failing" and
repeatable, meaning "starting a

server on one day and starting
on another day should have bit-
for-bit identical code".

You will need to rollback,
because you will deploy bad
code at some point. You need to
know that the prior version still
works, because you're already
rolling back production because
of an error, and you really don't
want your problems to get
worse.

We improve repeatability by
avoiding downloading or re-
solving anything mutable. Any
scheme involving git or lein or
apt-get when turning on a server
is immediately suspect, and npm
is right out! Downloading pre-
viously-resolved deps is better,
but still not as good as baking
the deps directly into your arti-
fact. That guarantees that even
if there is an npm-style disaster,
your old build still works.

Avoid writing lein plugins
During the lein 1.x days, plugins
were the standard way of add-
ing functionality to your build.
The combination of lein run
and :aliases has changed that.
Whenever possible, write a stan-
dard clojure function, then add
it to :aliases in your project.clj:

{:aliases "build-foo" ["run" "-m"

"rasterize.build.foo/build-foo"]}

Typically, the only reason
you'll need a plugin is to control
the classpath.

Standard functions are much
easier to write, test, run, and
chain together. Chaining clojure
functions is just do. Chaining
lein plugins is lein do, which is
slower and awkward, and can't
(easily) be done from the repl or
other functions.

Prefer Clojure over build tools
In the last section, I said 'pre-
fer Clojure functions over lein
plugins'. Now I'm also saying
'prefer Clojure functions over
bash and most CLI tools'. Obvi-
ously some allowance needs to
be made for tools that are very
hard to replace, but your asset
fingerprinting probably isn't one
of them. Clojure is an incredibly
powerful language. Most of the
time, you'll get more power,
flexibility and insight into your
build process if you use clojure
code over command line tools.

For example, Rasterize's
asset compilation, fingerprinting
and deploy to S3 are all standard
Clojure functions, using less4j
java.io and AWS libraries. The
Rasterize static site generation
(.md to .html, etc) is all clojure.
These are functions that I can
run from the repl, and debug
using standard clojure tools. I
haven't used boot in anger yet,
but I'm supportive of its philos-
ophy.

Conclusion
And there we have it. A haphaz-
ard collection of poorly justified
opinions. Let me know if you
agree or disagree on Hacker
News.

(def stripe-api-endpoint "https://api.stripe.com")

(defn stripe-api [auth path args]

 (http/request (str stripe-api-endpoint path)

 (merge {:basic-auth auth} args)))

Reprinted with permission of the original author. First appeared at rasterize.io/blog/.

 Using clj-http directly

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201606
http://bit.ly/1qSupSb
http://bit.ly/1qSupSb
http://bit.ly/1qX52hX

Also known as Eskimo ice cream, akutaq, is a traditional food
of the indigenous people of Alaska. Made from animal fat
(whale, reindeer or seal), berries and ground fish, akutaq is

a highly nutritious survival food of the Arctic. It is made by whip-
ping the fat until it is light and airy, and mixing in the berries and
fish. The concoction is left to freeze in the cold until it resembles
ice cream. This sweet and tart treat is usually served at celebra-
tions and gatherings.

* FOOD BIT is where we, enthusiasts of all edibles, sneak in a fun fact about food.

Akutaq

food bit *

HACKER BITS is the monthly magazine that gives you the hottest technology and startup stories crowdsourced by the readers of Hacker
News. We select from the top voted stories for you and publish them in an easy-to-read magazine format.

Get HACKER BITS delivered to your inbox every month! For more, visit hackerbits.com.

Credit: By Matyáš Havel (Own work) [CC BY-SA 3.0], via Wikimedia Commons

http://news.ycombinator.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016
http://news.ycombinator.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016
http://hackerbits.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jun2016
https://commons.wikimedia.org/wiki/File%3AIced_Akutaq.jpg
http://creativecommons.org/licenses/by-sa/3.0

