
hacker bits
September 2016



Hello from Redmond!

Welcome to the September issue of Hacker Bits! We 
hope you’ve had an awesome summer!  

In this issue of Hacker Bits, we are so thrilled to 
bring you Tim O’Reilly, who tells us all about the 
future of work and why we shouldn’t fear technolo-
gy. You can check out the details for an event that 
explores the same topic at Tim’s The Next Economy 
Summit. 

And in the most highly-upvoted article, industry 
veteran Derek Sivers has some wise advice for those 
looking to give constructive feedback.

Also, as part of our design revamp, the magazine 
now features a consistent layout for every article, 
which we hope would improve readability, especially 
for those of you who read on mobile devices. Let us 
know if it’s working for you…

Enjoy the much cooler weather!

Peace and see you next issue!

— Maureen and Ray
us@hackerbits.com

new bits

http://oreil.ly/2bSoPvX
http://oreil.ly/2bSoPvX
mailto:us@hackerbits.com


3hacker bits

content bits

06 Don't replace people, augment 
them

Why Angular 2 switched to 
TypeScript

22 Hitchhiker trees: functional, 
persistent, off-heap sorted maps

Ten rules for negotiating a job 
offer

44 A beginners guide to thinking in 
SQL

40 The truth about deep learning

September 2016

28 Don't add your 2 cents

36 Senior engineers reduce risk

12

30

52 AI, Apple and Google

60 The dreaded weekly status email

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


4 hacker bits

David Greenberg
David is an indepen-
dent consultant who is 
interested in high per-
formance software and 
distributed systems. 
He’s the author of the 
O'Reilly book Building 
Applications on Mesos. 
You can find out more 
about his talks and ser-
vices at dgrnbrg.com.

Haseeb Qureshi
Haseeb is a software 
engineer at Airbnb. 
He's a former profes-
sional poker player, 
a bootcamp grad, an 
effective altruist, an 
English major, and an 
unreasonably cool guy.

Derek Sivers
Derek has been a mu-
sician, producer, circus 
performer, entrepre-
neur, TED speaker, and 
book publisher. See his 
(incredibly useful) site 
at sivers.org for more.

Zach Tellman
Zach writes code 
and sometimes not-
code.  Most recently, 
he's writing a book 
called Elements of 
Clojure. You can find 
information about his 
open source libraries, 
talks, and other writing 
at ideolalia.com.

Victor Savkin
Victor makes Angu-
lar. He also toys with 
eclectic programming 
technologies and 
obsesses over fonts 
and keyboard layouts. 
You can reach him 
@victorsavkin.

Tim O'Reilly
Tim is the founder and 
CEO of O'Reilly Media, 
Inc. Considered by 
many to be the best 
event producer, com-
puter book and video 
publisher in the world. 
Visit O'Reilly's platform 
at www.safaribook-
sonline.com and www.
oreilly.com.

Soham Chetan Kamani
Soham is a full stack 
developer passionate 
about the web. Es-
pecially interested in 
JavaScript, Python, and 
IOT. You can reach him 
@sohamkamani.

Clay McLeod
Clay is the co-founder 
of CM Technology, a 
company focused on 
improving supply chain 
management in the 
construction industry. 
He also works on build-
ing cutting edge tools 
machine learning for 
genomic pipelining.

contributor bits

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bRhIkl
http://bit.ly/2bRfEsR
http://bit.ly/2bBpGAs
http://bit.ly/2bRh0DV
http://bit.ly/2bRgAgN
http://bit.ly/2bRgAgN
http://oreil.ly/2bRgTrN
http://oreil.ly/2bRgTrN
http://bit.ly/2bRgkhL


5hacker bits

Ray Li
Curator

Ray is a software en-
gineer and data en-
thusiast who has been 
blogging at rayli.net 
for over a decade. He 
loves to learn, teach 
and grow. You’ll usu-
ally find him wrangling 
data, programming and 
lifehacking.

Maureen Ker
Editor

Maureen is an editor, 
writer, enthusiastic 
cook and prolific collec-
tor of useless kitchen 
gadgets. She is the 
author of 3 books and 
100+ articles. Her work 
has appeared in the 
New York Daily News, 
and various adult and 
children’s publications.

Christina Wodtke
Christina is an author, 
professor and speak-
er who teaches tech-
niques to create high 
performing teams. Her 
latest book, Radical 
Focus shows how to set 
better goals and create 
a rhythm of execution 
in order to achieve 
great things.

Benedict Evans
Benedict works at 
Andreessen Horowitz 
('a16z'), a venture capi-
tal firm in Silicon Valley 
that invests in tech-
nology companies. He 
tries to work out what's 
going on and what will 
happen next.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
https://rayli.net/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=aug2016
http://bit.ly/2bBpQI5
http://amzn.to/1VN5X0D
http://amzn.to/1VN5X0D


6 hacker bits

Don't replace people, 
augment them

By TIM O'REILLY

Opinion

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


I’m exploring technology and 
the future of work in a new 
event called The Next:Econo-
my Summit. If you’re building 
technology that augments hu-
mans so they can do work that 
was previously impossible, I 
want to hear from you.

 

“Could a machine do your 
job?” asked Michael 
Chui, James Manyika, 

and Mehdi Miremadi in a 
recent McKinsey Quarterly ar-
ticle, "Where Machines Could 
Replace Humans and Where 
They Can’t Yet." The authors 
try to put the current worries 
about this question in per-
spective:

“As automation technol-
ogies such as machine 
learning and robotics 
play an increasingly 
great role in everyday 
life, their potential effect 
on the workplace has, 
unsurprisingly, become a 
major focus of research 

and public concern. The 
discussion tends toward 
a Manichean guessing 
game: which jobs will 
or won’t be replaced by 
machines?

In fact, as our research 
has begun to show, the 
story is more nuanced. 
While automation will 
eliminate very few 
occupations entirely in 
the next decade, it will 
affect portions of almost 
all jobs to a greater or 
lesser degree, depending 
on the type of work they 
entail.”

Instead of the binary 
question of which jobs will 
be eliminated, the authors 
instead wisely point out that it 
is tasks that are being auto-
mated, and that automation 
doesn’t simply destroy jobs. It 
changes them.

But they don’t go far 
enough in their analysis. They 
assess the potential for job 

change in terms of the technical 
feasibility of automating various 
activities, the economics of labor 
supply and demand, and wheth-
er the savings from automation 
will justify the cost. 

They also note that “a fourth 
factor to consider is the bene-
fits beyond labor substitution, 
including higher levels of output, 
better quality, and fewer errors. 
These are often larger than 
those of reducing labor costs.”

But they don’t ask what, in 
my opinion, is the key question.

What will new technology let 
us do that was previously impos-
sible?

Those weavers who smashed 
machine looms in Ned Ludd’s 
rebellion of 1811 didn’t realize 
that descendants of those ma-
chines would make unbelievable 
things possible. 

We’d tunnel through moun-
tains and under the sea, we’d fly 
through the air, crossing conti-
nents in hours, we’d build cities 
in the desert with buildings a 
half mile high, we’d more than 
double average human lifespan, 
we’d put spacecraft in orbit 

If we let machines put us out of work, 
it will be because of a failure of 
imagination and the will to make a 
better future!

http://oreil.ly/2b50QZC
http://oreil.ly/2b50QZC
http://oreil.ly/2b50QZC
http://oreil.ly/2b50QZC
mailto:nexteconomy@oreilly.com
mailto:nexteconomy@oreilly.com
http://bit.ly/2b87E8L
http://bit.ly/2b87E8L
http://bit.ly/2b87E8L


8 hacker bits

around Jupiter, we’d smash the 
atom itself! 

What is impossible today, 
but will become possible with 
the technology we are now 
afraid of?

As Google chief economist 
Hal Varian has said, “My grand-
father wouldn’t recognize what 
I do as work.” What are the new 
jobs of the 21st century that 
aren’t going to be replaced or 
changed, but invented out of 
whole cloth?

Let me explain with a per-
sonal anecdote. I used to be 
legally blind without huge 
coke-bottle glasses. My eyes 
were fixed by an augmented 
surgeon who was able to do 
something that had been previ-
ously impossible. 

Ten years ago, in my column 
for Make magazine, I gave an 
account of my surgery:

I had laser eye surgery the 
other day, and after more 
than forty years of wear-
ing glasses so strong that 
I was legally blind without 

them, I can see clearly on 
my own. I had a perfect 
outcome: 20/20 for far 
vision, yet still able to read 
and do other close work 
as well. I keep saying to 
myself: I’m seeing with my 
own eyes!

But in order to remove 
my need for prosthetic 
vision, the surgeon ended 
up relying on prosthetics 
of her own, performing 
the surgery with the aid 
of a complex of high tech 
equipment and a team of 
specialized technicians.

First they mapped my 
eyes with a device called a 
corneal topographer, and 
came up with a modifica-
tion plan. Then they used a 
laser to blister the surface 
of my cornea, and twenty 
minutes later, the surgeon 
used a micro-keratome to 
lift the flap of the blister so 
another laser could do the 

real mods to the deeper 
layers of the cornea. 

During the actual surgery, 
apart from lifting the flap 
and smoothing it back 
into place after the laser 
was done, her job was to 
clamp open my eyes, hold 
my head, utter reassuring 
words, and tell me, some-
times with urgency, to 
keep looking at the red 
light! 

Afterwards, I asked what 
happened if my eyes 
drifted, and I didn’t stay 
focused on the light. “Oh, 
the laser would stop. It 
only works when your eyes 
are tracking.”

In short, surgery this so-
phisticated could never be 
done by an unaugmented 
human being. The human 
touch of my superb doctor 
was paired with the inhu-
man accuracy of complex 

What is impossible today, but will 
become possible with the technology 
we are now afraid of?

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b87pur


9hacker bits

machines, a twenty-first 
century hybrid freeing me 
from the tyranny of assis-
tive devices first invented 
in thirteenth century Italy.

Whether or not we’re head-
ing for a Kurzweil-style sin-
gularity, in which humans 
merge with machines, an 
increasing number of our 
activities are only possible 
with the aid of computers 
and other complex devices. 
My eye surgery is only one 
example.

The revolution in sensors, 
computers and control 
technologies is going to 
make many of the daily 
activities of the twentieth 
century seem quaint as, 
one by one, they are rein-
vented in the twenty-first.

This is the true opportunity 
of technology: it extends hu-
man capability. There is way too 
much handwringing about the 
possibility of technology elimi-

nating human jobs, and way too 
little imagining new jobs that 
could only be done with the help 
of technology.

There’s a profound failure of 
imagination and will in much of 
today’s economy. For every Elon 
Musk who wants to reinvent 
the world’s energy infrastruc-
ture, build revolutionary new 
forms of transport, go to Mars, 
and forge ahead with self-driv-
ing cars, there are far too many 
companies that are simply 
cutting costs and pulling money 
out of the economy.

I sometimes think it will 
take a great crisis to pull us 
out of our current malaise, in 
much the same way that World 
War II helped to end the Great 
Depression. Climate change or 
a pandemic or another vast war 
impelled by anger and hopeless-
ness may be the trigger. But one 
would hope that we could avoid 
that dire contingency!

Economic historian Louis 
Hyman was recently inter-
viewed about the gig economy 
(one symptom of the technologi-

cal displacement that Chui, Man-
yika, and Miremadi explored.) 

Hyman reflected on what 
the history of the Great Depres-
sion and World War II teaches 
us about the kind of investment 
necessary to make a better 
future.

“There’s a great unravel-
ing, and there’s a great 
forgetting what made 
possible the post-war life 
and forgetting that there’s 
a deep connection between 
security in our economic 
lives, and security and us 
as a democratic society, as 
people who are happy, and 
vote reasonably and don’t, 
you know, worry about the 
future as much. 

Across lines of class, 
across lines of education, 
we are all movingtowards 
this freelance economy, 
this unstable economy. 
And for some people, it 
works out great if you’re a 
consultant. You can make 

This is the true opportunity 
of technology: 
it extends human capability.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b87X3j
http://bit.ly/2b87X3j
http://bit.ly/2b87gae
http://bit.ly/2b87gae
http://bit.ly/2b87gae
http://bit.ly/2b87gae
http://bit.ly/2b87lLg
http://bit.ly/2b87lLg
http://bit.ly/2b87lLg


10 hacker bits

tons of money in just one 
day. And if you’re an un-
documented worker who’s 
working in very dangerous 
conditions outside the sur-
veillance of labor law, it’s 
not so good…

Back in the 1930s, when 
there were homeless en-
campments in Washington, 
D.C., very much like the 
homeless encampments 
that are now under the 
I-280 in San Francisco, 
the federal government 
invested capital in new 
industries to create jobs 
for millions of people. They 
created tax codes that 
redistributed from the rich 
to the poor…”

But redistribution of income 
and the beginnings of the mod-
ern social safety net were only 
part of the story. Hyman contin-
ued:

“The New Deal’s Recon-
struction Finance Corpora-
tion not only helped light 
up America — moving it 
from 10 percent of homes 
having electricity in 1930 
to more than 60 percent a 
decade later — it also fund-
ed research in the Defense 
Plant Corporation.

It was fundamentally 
about investment in edgy 
technology, so things like 
aerospace, aluminum ex-
traction, synthetic rubber 
were all brought to scale,’ 
Hyman says. ‘Aerospace 
before 1939 had fewer 
people working in it than 
worked in candy manufac-
turing. And after World 
War II, the aerospace 
industry was four times 
the size of the pre-war car 
industry. This is incredi-
ble scale and scope of an 
endeavor, to utterly trans-
form the economy in about 
five years, by using idle 
capital…”

“There’s so much capital 
out there, and they don’t 
know where to put it. It’s 
hard for us to imagine as 
normal people, but for the 
big players in the glob-
al economy, the pension 
funds, the hedge funds 
the bazillion billionaires, 
they’re desperate to find 
an outlet for capital. And 
right now, the best outlook 
for capital is our home 
mortgages and our credit 
card loans. And until we 
provide them with better 
outlets, like we did during 
the 1930s and ’40s, to 
invest in aerospace and 
more cutting edge tech-
nology in industries that 
employ millions, it’s going 
be very hard to get our 
economy going again. And 
fundamentally, this is how 
capitalism has to work. It 
has to be a virtuous cycle, 
where capital comes into 
businesses, is invested and 
creates new jobs.”

That we utterly transformed the US 
economy during a period of only five 
years should inspire us to ask what 
is holding us back today.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


11hacker bits

Reprinted with permission of the original author. First appeared at medium.com/the-wtf-economy.

Hyman’s reminder that 
during World War II we utterly 
transformed the US economy 
during a period of only five 
years should inspire us to ask 
what is holding us back today. 
Do we need a crisis, or can we 
make bold moves without one?

How we frame the future 
matters! If we create an attitude 
of fear towards technology, we 
miss the huge opportunity to 
put it to work solving problems 
that bedevil us today. It’s our 
responsibility as entrepreneurs 
and technologists to rethink 
what is possible!

Technology lets us rethink 
the very structure of how we do 
things. Consider, for example, 
the way that Uber and Lyft have 
transformed urban transpor-
tation. There were connected 
taxicabs long before Uber — but 
all they did was to recreate the 
old process. 

What we got for our connec-
tivity was a credit card reader 
in the back, and a small screen 
showing us ads. What Garrett 
Camp and Travis Kalanick real-

ized was that humans were now 
augmented by location-aware 
smartphones, and so you could 
completely rethink the way you 
summoned a car. 

It would be utter magic to 
someone from the past  —  that 
you can click on your phone, 
and summon a car to whereever 
you are, and to know just how 
long it will take for a car to pick 
you up.

But when Uber started 
talking about self-driving cars, 
they lost the plot and started 
talking only about cutting costs 
and eliminating workers. Rather 
than crowing about how they’d 
finally get rid of those pesky 
drivers, they should have been 
talking about an experiment 
that they’ve run since 2014, de-
livering flu shots.

“Sure, we won’t always have 
drivers. But just imagine how 
many other jobs we can restruc-
ture and make more magical 
and on demand once the trans-
portation is even cheaper and 
more convenient!”

Zipline is completely re-

thinking how healthcare could 
be delivered in an on-demand 
world. Their pilot project in 
Rwanda looks to address one 
of the leading causes of death  

—  postpartum hemorrhage  —  by 
delivering blood on demand, via 
high speed drone, to locations 
without modern transportation 
or healthcare infrastructure. 

But if you think about it, on 
demand technology could be 
transforming healthcare ev-
erywhere — if we think big, and 
use technology not just to cut 
costs and improve profits but 
to deliver previously impossible 
services!

If you’d told the weavers 
of Ned Ludd’s time that those 
machines they were smashing 
would mean that ordinary peo-
ple would have more changes of 
clothing than the richest nobles 
of their day, they would have 
shaken their heads in astonish-
ment. What might we be aston-
ished by if we have the courage 
to invest in the possibilities of a 
better future? 

What might we be astonished by if 
we have the courage to invest in the 
possibilities of a better future? 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b50ulN
http://bit.ly/2b889zK
http://bit.ly/2b889zK
http://bit.ly/2b889zK


12 hacker bits

Programming

By HASEEB QURESHI

Ten rules for negotiating a 
job offer

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


13hacker bits

When the story of how 
I landed a job at Airb-
nb went viral, I was 

surprised at how infatuated peo-
ple were with my negotiations. 
Media stories portrayed me as 
some kind of master negotia-
tor — a wily ex-poker-player who 
was able to con the tech giants 
into a lucrative job offer.

This is silly. It’s silly for a lot 
of reasons, but one of the main 
ones is that in reality, my nego-
tiation skills are nothing special. 
There are lots of job candidates 
who are better negotiators than 
I, to speak nothing of recruiters 
and other professional negotia-
tors.

It just so happens that most 
people don’t negotiate at all, or 
if they do, they negotiate just 
enough to satisfy themselves 
that they did.

Worse yet, most of the 
advice out there on negotiation 
is borderline useless. Almost 
anything you read on the subject 
will be a vague and long-winded 
exhortation to “make sure you 
negotiate” and “never say the 
first number.” Beyond those two 
morsels of advice, you’re pretty 
much on your own.

I thought to myself: why is 
there so little actionable advice 
out there about negotiation? I 
suspect it’s because deep down, 
many people believe that nego-
tiation is inexplicable, that it’s 
something some people can 

do and others can’t, and that 
there’s no real way to break it 
down so anyone can learn it.

I say that’s BS. Negotiation is 
a skill that can be learned, just 
like any other. I don’t believe it’s 
particularly elusive or hard to 
understand. So I’m going to try 
to explain how anyone can do it.

Three caveats.
First: I’m not an expert. 

There are people who really are 
experts at this, and when my 
advice contradicts theirs, you 
should assume I’m wrong.

Second: negotiation is tricky 
to generalize about because 
it’s deeply intertwined with 
social dynamics and power. The 
appropriate advice for an Asian 
male in Silicon Valley may not be 
appropriate for a black woman 
in Birmingham, Alabama. Racial, 
sexual, and political dynamics 
accompany you to the negotiat-
ing table.

At the same time, I want to 
caution against overemphasiz-
ing these factors. Being afraid to 
negotiate out of fear of discrimi-
nation can often be just as dele-
terious as discrimination itself.

Ceteris paribus, negotiate 
aggressively.

Third: I’m the first to admit 
that negotiation is stupid. It’s a 
practice that inherently benefits 
those who are good at it, and is 
an absurd axis on which to re-
ward people. But it’s a reality of 
our economic system. And like 

most collective action problems, 
we’re probably not going to be 
able to abolish it any time soon. 
In which case, you might as well 
improve at it.

So here’s my guide to ne-
gotiation. It’s going to be split 
into two parts: the first part will 
be about conceptualizing the 
negotiating process, about how 
to begin the process and set 
yourself up for maximal success. 

The second part will be ad-
vice on the actual back-and-forth 
portion of negotiating and how 
to ask for what you want.

Let’s take it from the top.

What it means to “get 
a job”
In our culture we call entering 
the employment market “trying 
to get a job.” This is an unfor-
tunate turn of phrase. “Getting 
a job” implies that jobs are a 
resource out in the world, and 
you’re attempting to secure one 
of these resources.

But that’s completely back-
wards. What you are actually 
doing is selling your labor, and a 
company is bidding for it.

Employment is just striking a 
mutual deal in the labor market.

Like any market, the labor 
market only functions well if 
it’s competitive. This is the only 
way to ensure fair and equitable 
pricing. 

Negotiation is a skill that can 
be learned, just like any other.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b2JYPH
http://bit.ly/2b2JYPH
http://bit.ly/2b2JYPH


14 hacker bits

Imagine you were a farmer 
selling watermelons. Would you 
just sell your watermelons to the 
first buyer who agreed to pur-
chase them? 

Or would you survey the 
marketplace of buyers, see the 
best price (and business partner) 
you could get, and then make 
an informed decision on which 
buyer to sell to?

And yet, when people talk 
about the labor market, they 
think “oh, a company wants 
to give me a job! What a relief!” 
As though having a job were in 
itself some special privilege for 
which a company is the gate-
keeper.

Dispel yourself of this mind-
set.

A job is just a deal. It is a 
deal between you and a compa-
ny to exchange labor for money 
(and other things you value).

This might sound like an 
abstract point, but you should 
absolutely approach negotiation 
from this perspective.

The role of 
negotiation
Negotiating is a natural and 
expected part of the process of 
trying to make a deal. It’s also a 
signal of competence and seri-
ousness.  

Companies generally respect 
candidates who negotiate, and 

most highly attractive candi-
dates negotiate (if for no other 
reason, because they often have 
too many options to choose 
from).

At the risk of spouting 
truisms: always, always negoti-
ate. It doesn’t matter how good 
or bad you think you are. You 
never damage a relationship by 
negotiating.

In all my time as an instruc-
tor at App Academy, out of 
hundreds of offers negotiated, 
only once or twice were offers 
ever rescinded in negotiations. 
It basically never happens. And 
when it does, it was usually be-
cause the candidate was being 
an unconscionable asshole, or 
the company was imploding and 
needed an excuse to rescind the 
offer.

You might think to yourself: 
“well, I don’t want to set high 
expectations, and the offer is 
already generous, so I ought to 
just take it.”

No. Negotiate.
Or maybe: “I don’t want to 

start off on the wrong foot and 
look greedy with my future em-
ployer.”

No. Negotiate.
“But this company is small 

and — “
No. Shut up. Negotiate.
We’ll talk more in the next 

section about why a lot of these 
objections are BS, and funda-
mentally misapprehend the 

dynamics of hiring. But for now, 
just trust me that you should 
always negotiate.

The ten rules of 
negotiating
I’ve tried to boil down negotia-
tion to ten rules. The rules, in 
order of appearance, are:

1.	 Get everything in writing

2.	 Always keep the door 
open

3.	 Information is power

4.	 Always be positive

5.	 Don’t be the decision 
maker

6.	 Have alternatives

7.	 Proclaim reasons for 
everything

8.	 Understand what they 
value

9.	 Be motivated by more 
than just money

10.	 Be winnable

We’ll only get through some 
of these in this blog post, and 
the rest will appear in the sec-
ond part. But I’ll explain each 
rule as we get to it.

So let’s start from the top 
and try to walk through a ne-
gotiation process from the very 
beginning. For most, that starts 
when you receive an offer.

At the risk of spouting truisms: 
always, always negotiate. 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


15hacker bits

The offer 
conversation
You’ve just received the phone 
call: your interview went well, 
and after much deliberation they 
decided they like you. They want 
to make you an offer. Congratu-
lations!

Don’t get too excited 
though. The fun is just getting 
started.

Thank your recruiter. Sound 
excited  —  hopefully this won’t 
be hard. Before jumping into 
details, try to ask for specific 
feedback on your interview per-
formance. 

If they give it to you, this 
will help you gauge how much 
they want you, as well as tell you 
things you can improve on in 
your next interview(s).

Now, time to explore the 
offer.

Rule #1 of negotiating: have 
everything in writing.

Eventually, they’ll give you 
information about the offer. 
Write it all down. Doesn’t mat-
ter if they’re going to send you 
a written version later, write 
everything down. 

Even if there are things 
that are not directly monetary, 
if they relate to the job, write 
them down. If they tell you 
“we’re working on porting the 
front-end to Angular,” write that 
down. 

If they say they have 20 
employees, write that down. 
You want as much information 
as you can. You’ll forget a lot 
of this stuff, and it’s going to 
be important in informing your 
final decision.

Depending on the company, 
they’ll also tell you about the 
equity package. We’ll look more 
specifically at equity in part II, 
but be sure to write everything 
down.

The rule from here on out is 
that everything significant you 
discuss will have some kind of a 
paper trail. Often, the company 
won’t even send you an official 
offer letter until a deal is final-
ized. So it falls to you to confirm 
all of the important details in 
subsequent emails.

So yadda yadda, lots of 
details, writing stuff down, oh 
there’s a joke, time to laugh. 
Now the recruiter is done talking 
and you’re done asking all of 
your questions.

Your recruiter will now say 
something along the lines of “so 
what do you think?”

This seems innocuous, but 
your reply here is critical, be-
cause there’s a lot you can say 
to weaken your position. This is 
your first decision point.

A decision point is a moment 
in the negotiation where your 
interlocutor wants to compel 
you to make a decision. If they 
succeed in tying you to a posi-

tion, they will close the door on 
further negotiating. 

Of course “what do you 
think?” is a subtle prod. But it is 
the beginning of many attempts 
to get you to make a premature 
commitment.

This leads to rule #2 of 
negotiating: always keep the 
door open. 

Never give up your negotiating 
power until you’re absolutely 
ready to make an informed, de-
liberate final decision.

This means your job is to 
traverse as many of these deci-
sion points as possible without 
giving up the power to continue 
negotiating. 

Very frequently, your inter-
locutor will try to trick you into 
making a decision, or tie you to 
a decision you didn’t commit to. 
You must keep verbally jiu-jit-
su-ing out of these antics until 
you’re actually ready to make 
your final decision.

Protecting 
information
There’s an uncomfortable si-
lence by now, and their “what do 
you think?” is hanging in the air.

If you say “yes, that sounds 
amazing, when do I start?” you’d 
have implicitly accepted the 
offer and completely closed the 
door on the negotiation. 

Rule #1 of negotiating: 
have everything in writing.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


16 hacker bits

This is your recruiter’s num-
ber one favorite thing to hear. It 
stands to reason you probably 
shouldn’t do this.

But their second favorite 
thing to hear you say is “can 
you do 90K instead of 85K?” 
This also closes the door, but 
for a different and more subtle 
reason. And it’s the number one 
reason why most people suck at 
negotiation.

Rule #3 of negotiating: 
information is power. 

To protect your power in the 
negotiation, you must protect in-
formation as much as possible.

A company doesn’t give you 
insight into what it’s thinking. It 
doesn’t tell you its price range, 
how much it paid the previous 
candidate with your experience, 
or anything like that. 

It intentionally obfuscates 
those things. But it wants you 
not to do the same.

A company wants to be like 
a bidder in a secret auction. 
But unlike the other bidders, it 
wants to know exactly how high 
all of the other bids are. It then 
openly intends to exploit that 
knowledge, often by bidding 
one cent more than the second 
highest bid.

Yeah, no. Screw that. It’s a 
silent auction, and to keep it 
that way, you must protect infor-
mation.

In many situations, the only 

reason why you have any negoti-
ating power at all is because the 
employer doesn’t actually know 
what you’re thinking. 

They might not know how 
good your other offers are, or 
how much you were making in 
your last job, or how you weigh 
salary vs equity, or even how ra-
tional you are as a decision-mak-
er. 

Bottom line, you want them 
to be uncertain on exactly what 
it would take to sign you.

When you say “can you do 
90K instead of 85K,” you’ve told 
them exactly what it will take 
to make you sign. The sheet’s 
pulled back, the secret auction 
is up, and they’re going to bid 
90K (or more likely, 87K). And 
they know there’s almost no 
risk in doing so, because you’ll 
probably accept.

What if you were the kind of 
person who wouldn’t even con-
sider an offer below 110K? Or 
the kind of person who wouldn’t 
consider an offer below 120K? 

If you were, you wouldn’t 
ask for 90K, and if they offered 
it as conciliation, you’d tell them 
to stop wasting your time.

By staying silent, they don’t 
actually know which of those 
kinds of people you are. In their 
mind, you could be any of the 
three.

A corollary of this rule is 
that you should not reveal to 
companies what you’re currently 

making. There are some excep-
tions, but as a rule you should 
assume this. 

If you must divulge what 
you’re making, you should be 
liberal in noting the total value 
of your package (incorporate 
bonuses, unvested stock, near-
ness to promotion etc.), and 
always mention it in a context 
like “[XYZ] is what I’m currently 
making, and I’m definitely look-
ing for a step up in my career 
for my next role.”

Companies will ask about 
your current compensation 
at different stages in the pro-
cess — some before they ever 
interview you, some after they 
decide to make you an offer. But 
be mindful of this, and protect 
information.

So given this offer, don’t 
ask for more money or equity or 
anything of the sort. Don’t com-
ment on any specific details of 
the offer except to clarify them.

Give away nothing. Retain 
your power.

Say instead:

“Yeah, [COMPANY_NAME] 
sounds great! I really 
thought this was a good 
fit, and I’m glad that you 
guys agree. Right now I’m 
talking with a few other 
companies so I can’t speak 
to the specific details of the 
offer until I’m done with 
the process and get closer 

Bottom line, you want them to be 
uncertain on exactly what it would 
take to sign you.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


17hacker bits

to making a decision. But 
I’m sure we’ll be able to 
find a package that we’re 
both happy with, because 
I really would love to be a 
part of the team.”

Think like the watermelon 
farmer. This offer is just the first 
businessman who’s stopped by 
your watermelon patch, glanced 
over your crops, and announced 
“I’ll take all of these right now 
for $2 a melon.”

Cool. It’s a big market, and 
you’re patient — you’re a farmer 
after all. Just smile and tell them 
you’ll keep their offer in mind.

And this is super important: 
always be unequivocally posi-
tive.

The importance of 
positivity

Staying positive is rule #4 of 
negotiation. 

Even if the offer sucks, it’s 
extremely important to remain 
positive and excited about the 
company. 

This is because your excite-
ment is one of your most valu-
able assets in a negotiation.

A company is making you 
an offer because they think 
you’ll do hard work for them if 
they pay you. If you lose your 
excitement for the company 

during the interview process, 
then they’ll lose confidence that 
you’ll actually want to work hard 
or stay there for a long time. 

Each of those makes you 
less attractive as an investment. 
Remember, you are the product! 
If you become less excited, then 
the product you’re selling actu-
ally loses value.

Imagine you were negoti-
ating with someone over buy-
ing your watermelons, but the 
negotiation took so long that 
by the time you’d reached an 
agreement, your watermelons 
had gone bad.

Companies are terrified 
of that. They don’t want their 
candidates to go bad during a 
negotiation. Hence they hire pro-
fessional recruiters to manage 
the process and make sure they 
remain amicable. 

You and the recruiter share 
the same interest in that regard. 
If a company feels like you’ve 
gone bad, suddenly they’re a lot 
less willing to pay for you.

So despite whatever is hap-
pening in the negotiation, give 
the company the impression that 
1) you still like the company, 
and that 2) you’re still excited to 
work there, even if the numbers 
or the money or the timing is 
not working out. 

Generally the most convinc-
ing thing to signal this is to 
reiterate you love the mission, 
the team, or the problem they’re 

working on, and really want to 
see things work out.

Don’t be the decision-
maker
You can wrap up the conversa-
tion now by saying:

“I’ll look over some of 
these details and discuss it 
with my [FAMILY / CLOSE_
FRIENDS / SIGNIFICANT_
OTHER]. I’ll reach out to 
you if I have any questions. 
Thanks so much for shar-
ing the good news with me, 
and I’ll be in touch!”

So not only are you ending 
the conversation with the pow-
er all in your hands, but note 
there’s another important move 
here: you’re roping in other de-
cision-makers.

Rule #5 of negotiation: don’t 
be the decision-maker. 

Even if you don’t particularly 
care what your friends/family/
husband/mother thinks, by 
mentioning them, you’re no lon-
ger the only person the recruiter 
needs to win over. 

There’s no point in them 
trying to bully and intimidate 
you; the “true decision-maker” is 
beyond their reach.

This is a classic technique in 
customer support and remedia-

Remember, you are the product! 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


18 hacker bits

tion. It’s never the person on the 
phone’s fault, they’re just some 
poor schmuck doing their job. 
It’s not their decision to make. 
This helps to defuse tension and 
give them more control of the 
situation.

It’s much harder to pressure 
someone if they’re not the final 
decision-maker. So take advan-
tage of that.

Okay!
We have our first offer. Send 

a follow-up email confirming 
all of the details you discussed 
with your recruiter so you have a 
paper trail. Just say “just wanted 
to confirm I had all the details 
right.”

Groovy. Next step is to lever-
age this to land other offers and 
find the best deal we can find in 
the job market.

Getting other offers
Turns out, it doesn’t matter that 
much where your first offer is 
from, or even how much they’re 
offering you. Just having an 
offer in hand will get the engine 
running.

If you’re already in the pipe-
line with other companies (which 
you should be if you’re doing 
it right), you should proactively 
reach out and let them know 
that you’ve just received an 
offer. 

Try to build a sense of 
urgency. Regardless of whether 

you know the expiration date, all 
offers expire at some point, so 
take advantage of that.

 
“Hello [PERSON],

I just wanted to update 
you on my own process. 
I’ve just received an offer 
from [COMPANY] which is 
quite strong. That said, I’m 
really excited about [YOUR 
AMAZING COMPANY] and 
really want to see if we 
can make it work. Since 
my timeline is now com-
pressed, is there anything 
you can do to expedite the 
process?”

Should you specifically 
mention the company that gave 
you an offer? Depends. If it’s a 
well-known company or a com-
petitor, then definitely mention 
it. If it’s a no-name or unsexy 
company, you should just say 
you received an offer. If it’s ex-
piring soon, you should mention 
that as well.

Either way, send out a letter 
like this to every single company 
you’re talking to. No matter how 
hopeless or pointless you think 
your application is, you want to 
send this signal to everyone who 
is considering you in the market.

Second, if there are any 
other companies you are looking 
to apply to (whether through 
referral or cold application), or 

even companies at which you’ve 
already applied but haven’t 
heard back, I would also follow 
up with a similar email.

So why do this? Isn’t this 
tacky, annoying, or even desper-
ate?

None of the above. It is the 
oldest method in history to 
galvanize a marketplace — show 
that supplies are limited and 
build urgency. Demand breeds 
demand. Not every company will 
respond to this, but many will.

Isn’t it stupid that compa-
nies respond to this though?

Why companies care 
about other offers
When I wrote about the story of 
my own job search, I mentioned 
how having an offer from Google 
made companies turn around 
and expedite me through their 
funnels. Many commentators 
lamented at the capriciousness 
of these companies. 

If Uber or Twitch only talked 
to me because of Google and 
until then weren’t willing to look 
at me, what did that say about 
their hiring processes? What 
legitimately are they evaluating, 
if anything at all?

I think this response is total-
ly backwards. The behavior of 
tech companies here is actually 
very rational, and you would do 
well to understand it.

Just having an offer in hand 
will get the engine running.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b2JYPH
http://bit.ly/2b2JYPH


19hacker bits

First, you must realize what 
a company’s goal is. A compa-
ny’s goal is to hire someone who 
will become an effective employ-
ee and produce more value than 
their cost. 

How do you figure out who 
will do that? Well, you can’t 
know for certain without actually 
hiring them, but there are a few 
proxies. 

Pedigree is the strongest 
signal; if they did it at other 
companies, they can probably 
do it at yours. And if someone 
trusted within the organization 
can vouch for them, that’s often 
a strong signal as well.

But turns out, almost every-
thing else is a weak signal. Weak 
in the sense that it’s just not 
very reliable. Interviews, if you 
think about it, are long, sweaty, 
uncomfortable affairs that only 
glancingly resemble actual em-
ployment. 

They’re weird and can’t tell 
you that much about whether 
an individual will be a good at 
their job. There’s no way around 
this. There are a few stronger 
signals, like bringing someone 
in for a week or two on a con-
tract-to-hire position, but strong 
candidates won’t consider this. 
So candidates as a whole have 
effectively forced companies to 
assume almost all of the risk in 
hiring.

The truth is, knowing that 
someone has passed your 

interview just doesn’t say that 
much about whether they’ll be 
a good employee. It’s as though 
you knew nothing about a stu-
dent other than their SAT score. 
It’s just not a lot of data to go 
off.

Nobody has solved this prob-
lem. Not Google or anyone else.

And this is precisely why 
it’s rational for companies to 
care that you’ve received other 
offers. They care because each 
company knows that their own 
process is noisy, and the pro-
cesses of most other companies 
are also noisy. 

But a candidate having multi-
ple offers means that they have 
multiple weak signals in their fa-
vor. Combined, these converge 
into a much stronger signal than 
any single interview. 

It’s like knowing that a 
student has a strong SAT score, 
and GPA, and won various schol-
arships. Sure, it’s still possible 
that they’re a dunce, but it’s 
much harder for that to be true.

This is not to say that com-
panies respond proportionally 
to these signals, or that they 
don’t overvalue credentials and 
brands. They do. But caring 
about whether you have other 
offers and valuing you accord-
ingly is completely rational.

So this is all to say — tell 
other companies that you’ve 
received offers. Give them more 
signal so that they know you’re 

a valued and compelling can-
didate. And understand why 
this changes their mind about 
whether to interview you.

As you continue interview-
ing, remember to keep practic-
ing your interview skills. The 
single strongest determinant of 
your final offer will be the num-
ber and strength of offers that 
you receive.

Some advice on 
timing
You want to be strategic about 
the timing of your offers. Gen-
erally, you should try to start 
interviewing at larger companies 
earlier. Their processes are slow-
er and their offer windows are 
wider (meaning they allow you 
more time to decide). Startups 
are the other way around.

Your goal should be to have 
as many offers overlapping at 
the same time as possible. This 
will maximize your window for 
negotiating.

When you receive an offer, 
often the first thing you should 
ask for is more time to make 
your decision. Especially in your 
first offer, more time is by far 
the most valuable thing you can 
ask for. It’s time that enables 
you to activate other companies 
and end up with the strongest 
possible offer. So be prepared to 
fight for time.

The single strongest determinant of 
your final offer will be the number and 
strength of offers that you receive.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


20 hacker bits

How to approach 
exploding offers
Hoo boy.

Exploding offers are offers 
that expire within 24–72 hours. 
You won’t see this much at big 
companies, but they’re becom-
ing increasingly common among 
startups and mid-sized compa-
nies.

Exploding offers suck, and 
I share most people’s disdain 
for this practice. But I do under-
stand it. Exploding offers are a 
natural weapon for employers to 
combat a strong hiring market 
for tech workers. 

Companies know exactly 
what they’re doing with explod-
ing offers — they play on fear 
and limit your ability to seek out 
counteroffers.

In a sense, it’s unsurpris-
ing that if startups have more 
difficulty attracting and secur-
ing talent, they’d resort to this 
practice. What I don’t like is the 
dishonesty about it. 

Employers often justify this 
by saying:

“If you need more time 
than this, then that’s a 
sign you’re not the kind of 
person we’re looking for.”

Please don’t buy this crap or 
feel guilty over it. They’re sim-

ply doing this to improve their 
chance of closing candidates. 
Needing more than three days to 
make a life decision isn’t a sign 
of anything other than thought-
fulness.

So what should you do if you 
receive an exploding offer?

Exploding offers are anathe-
ma to your ability to effectively 
navigate the labor market. Thus, 
there is only one thing to do. 
Treat the offer as a non-offer 
unless the expiration window is 
widened.

In no uncertain terms, con-
vey that if the offer is exploding, 
it’s useless to you.

Example conversation:

“I have one big concern. 
You mentioned that this 
offer explodes in 48 hours. 
I’m afraid this doesn’t 
work at all for me. There’s 
no way that I can make a 
decision on this offer with-
in a 48 hour window. I’m 
currently wrapping up my 
interview process at a few 
other companies, which is 
likely to take me another 
week or so. So I’m going to 
need more time to make 
an informed decision.”

If they push back and say 
this is the best they can do, then 
politely reply:

“That’s really unfortunate. 
I like [YOUR COMPANY] 
and was really excited 
about the team, but like I 
said, there’s no way I can 
consider this offer. 48 
hours just too unreason-
able of a window. The next 
company I join will be a big 
life decision for me, and 
I take my commitments 
very seriously. I also need 
to consult with my [EXTER-
NAL_DECISION_MAKER]. 
There’s no way that I can 
make a decision I’m com-
fortable with in this short 
an amount of time.”

Pretty much any company 
will relent at this point. If they 
persist, don’t be afraid to walk 
away over it. (They probably 
won’t let that happen, and will 
come grab you as you’re walking 
out the door. But if they don’t, 
then honestly, screw ‘em.)

I was given several explod-
ing offers during my job search. 
And every time, I did essentially 
this. Every single offer immedi-
ately widened to become more 
reasonable, sometimes by sever-
al weeks.

I want to emphasize, lest I 
be misunderstood here — what 
I’m saying is not to just silently 
let an exploding offer expire, 

Exploding offers are anathema 
to your ability to effectively 
navigate the labor market.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


21hacker bits

and assume that everything will 
be fine and they’ll still hire you. 
They won’t. 

For exploding offers to be a 
credible weapon, a company has 
to have a reputation of enforcing 
them. I’m saying explicitly call 
this out as an issue when they 
make the offer.

Don’t let a company bully 
you into giving away your nego-
tiating power.

The negotiating 
mindset
Before we enter into the actual 
back-and-forth, I want to exam-
ine the mindset you should have 
as a negotiator. This applies not 
just to how you approach the 
conversation, but also to how 
you think about the company.

Do not fall into the trap of 
valuing companies solely along 
one dimension. That means 
don’t just value companies 
based on salary, equity, or even 
on prestige. 

Those are all important 
dimensions, but so are cultural 
fit, the challenge of the work, 
learning potential, later career 
options, quality of life, growth 
potential, and just overall happi-
ness. 

None of these inherently 
trump any of the other. Anyone 

who tells you “just choose wher-
ever you think you’ll be happi-
est” is being just as simplistic as 
someone who says “just choose 
the one that offers the most 
money.” 

All of these things matter, 
and your decision should be 
genuinely multi-dimensional.

Be open to being surprised 
as you explore different compa-
nies.

It’s also important to under-
stand that companies don’t all 
value you along the same di-
mension either. That is, different 
companies are genuinely looking 
for different skills, and there are 
some companies at which you 
will be more and less valuable. 
Even at peer companies this is 
true, especially so if you have a 
specialized skill-set.

The more companies you 
talk to, the more likely you are 
to find a company to which you 
are significantly more valuable 
than the rest. Chances are this is 
where you’ll be able to negotiate 
your strongest offer. 

It might surprise you which 
company this turns out to be; 
keep an open mind, and re-
member that a job search is a 
two-sided process.

One of the most valuable 
things you can do for yourself 
in this process is to really try to 
understand how employers think 

and what motivates them. Un-
derstanding your interlocutor is 
extremely important in negotia-
tion, and we’ll be exploring that 
a lot in the next blog post.

But most of all I want to 
emphasize: be curious about the 
other side. Try to understand 
why employers think the way 
they do. Be sympathetic toward 
them. Care about what they 
want and help them try to get it. 
Adopting this mindset will make 
you a much stronger negotiator, 
and accordingly, a much better 
employee and team member.

Okay. That’s as far as we’re 
going for today. In the next blog 
post, I’m going to cover the last 
four rules of negotiation. I’ll also 
go over the actual back-and-
forth process — how to ask for 
what you want, how to strength-
en offers, and how to dismantle 
the tricks that companies will try 
to pull on you. Also a lot more 
on the theory of negotiation, 
which I really dig.

Do share this post if you 
found it useful! And follow me 
on Twitter for updates on when I 
post part 2 (which I promise will 
be soonish!) 

Keep an open mind, and 
remember that a job search 
is a two-sided process.

Reprinted with permission of the original author. First appeared at medium.freecodecamp.com.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2b2JR6U
http://bit.ly/2b2JR6U
http://bit.ly/2b2Lph0


22 hacker bits

Hitchhiker trees: 
functional, persistent, 
off-heap sorted maps
By DAVID GREENBERG

Programming

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


23hacker bits

This document will attempt 
to sketch out the big ideas in 
the hitchhiker tree. It will also 
attempt to call out various 
locations in the implementation 
where features are built.

High-level 
understanding
The goal of the hitchhiker tree 
is to wed three things: the query 
performance of a B+ tree, the 
write performance of an ap-
pend-only log, and the conve-
nience of a functional, persistent 
data structure. Let’s look at each 
of these in some detail.

B+ trees win at queries

You might remember an import-
ant theorem from data struc-
tures: the best-performing data 
structure for looking up sorted 

keys cannot do those queries 
faster than O(log(n)). 

Since sorted trees provide a 
solution for this, we’ll start with 
them. Now, a common sorted 
tree for this purpose is the Red-
Black tree, whose actual query 
performance is between log

2
(n) 

and 2*log
2
(n) (the write perfor-

mance is log
2
(n)).

The factor of 2 comes from 
the partial imbalances (which 
are still asymptotically balanced) 
that the algorithm allows, and 
the base 2 of the log comes 
from the fact that it’s a binary 
search tree.

A less popular sorted tree 
is the AVL tree — ​this tree 
achieves log

2
(n) query perfor-

mance, at the cost of always 
paying 2*log

2
(n) for inserts. We 

can already see a pattern —​ al-
though many trees reach the 
asymptotic bound, they differ in 
their constant factors.

The tree that the hitchhiker 
tree is based off of is the B+ 
tree, which achieves log

b
(n) que-

ry performance. Since b can be 
very large (on the order of 100s 
or 1000s), these trees are espe-
cially great when each node is 
stored on higher latency media, 
like remote storage or a disk. 

This is because each node 
can contain huge numbers of 
keys, meaning that by only 
keeping the index nodes in 
memory, we can access most 
keys with fewer, often just one, 
data accesses.

Unlike the above sorted trees 
(and B trees, which we won’t dis-
cuss), B+ trees only store their 
data (i.e. the values) in their 
leaves—​internal nodes only need 
to store keys.

Event logs win at writing data

Do you know the fastest way to 

The goal of the hitchhiker tree 
is to wed three things...

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


24 hacker bits

write data? Append it to the end 
of the file. There’s no pointers, 
no updating of data structures, 
no extra IO costs incurred.

Unfortunately, to perform a 
query on an event log, we need 
to replay all the data to figure 
out what happened. That replay 
costs O(n), since it touches every 
event written. So, how can we fix 
this?

Unifying B+ trees and event 
logs

The first idea to understand is 
this: how can we combine the 
write performance of an event 
log with the query performance 
of a B+ tree? The answer is that 
we’re going to “overlay” an event 
log on the B+ tree!

The idea of the overlay is 
this: each index node of the B+ 
tree will contain an event log. 
Whenever we write data, we’ll 

just append the operation (insert 
or delete) to the end of the root 
index node’s event log. 

In order to avoid the pitfall 
of appending every operation 
to an ever-growing event log 
(which would leave us stuck with 
linear queries), we’ll put a limit 
on the number of events that fit 
in the log. 

Once the log has overflowed 
in the root, we’ll split the events 
in that log towards their even-
tual destination, adding those 
events to the event logs of the 
children of that node. 

Eventually, the event log will 
overflow to a leaf node, at which 
point we’ll actually do the inser-
tion into the B+ tree.

This process gives us several 
properties:

•	 Most inserts are a single ap-
pend to the root’s event log

•	 Although there are a linear 
number of events, nodes are 
exponentially less likely to 
overflow the deeper they are 
in the tree

•	 All data needed for a query 
exists along a path of nodes 
between the root and a spe-
cific leaf node. Since the logs 
are constant in size, queries 
still only read log(n) nodes.

Thus we dramatically im-
prove the performance of inser-
tions without hurting the IO cost 
of queries.

Functional persistence

Now that we get the sketch of 
how to combine event logs and 
B+ trees, let’s see the beauty of 
making the whole thing func-
tional and persistent! 

Since the combined B+/log 
data structure primarily only 

The answer is that we’re 
going to “overlay” an 
event log on the B+ tree!

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


25hacker bits

modifies nodes near the root, 
we can take advantage of the 
reduced modification to achieve 
reduced IO when persisting the 
tree. 

We can use the standard 
path-copying technique from 
functional, persistent data 
structures. This gives great 
performance, since the structure 
is designed to avoid needing to 
copy entire paths — ​most writes 
will only touch the root. 

Furthermore, we can batch 
many modifications together, 
and wait to flush the tree, in 
order to further batch IO.

Code structure
The hitchhiker tree’s core 
implementation lives in 2 
namespaces: hitchhiker.tree.
core and hitchhiker.tree.mes-
saging.hitchhiker.tree.core 

implements the B+ tree and its 
extensibility hooks; hitchhiker.
tree.messaging adds the messag-
ing layer (aka log) to the B+ tree 
from core.

Protocols

In hitchhiker.tree.core, we have 
several important protocols:

hitchhiker.tree.core/

IKeyCompare

This protocol should be extend-
ed to support custom key com-
parators. It’s just like clojure.
core/compare.

hitchhiker.tree.core/IResolve

This protocol is the function-
ality for a minimal node. Not 
only will every node implement 
this, but also backends will use 

this to implement stubs, which 
automatically and lazily load the 
full node into memory during 
queries.

last-key is used for searches, 
so that entire nodes can remain 
unloaded from memory when we 
only need their boundary key.

dirty? is used to determine 
whether the IO layer would need 
to flush this node, or whether 
it already exists in the backing 
storage.

resolve loads the node into 
memory—​this could return itself 
(in the case of an already loaded 
node), or it could return a new 
object after waiting on some IO.

hitchhiker.tree.core/INode

This protocol implements a 
node fully in-memory. Gener-
ally, this shouldn’t need to be 

Let’s see the beauty of 
making the whole thing 
functional and persistent!

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


26 hacker bits

re-implemented; however, if the 
hitchhiker was to be enhanced 
with key and value size aware-
ness during splits and merges, 
you’d want to adjust the meth-
ods of this protocol.

hitchhiker.tree.core/Config

This structure must be passed 
to the hitchhiker.tree.core/b-
tree constructor, which is the 
only way to get a new tree. 
The index-b is the fanout on 
index nodes; the data-b is the 
key & value fanout on data 
nodes, and the op-buf-size is 
the size of the log at each index 
node. The Internet told me that 
choosing sqrt(b) for the op-buf-
size and b-sqrt(b) for the in-
dex-b was a good idea, but who 
knows?

hitchhiker.tree.core/IBackend

This protocol implements a 
backend for the tree.

new-session returns a “ses-
sion” object, which is a con-
venient way to capture back-
end-specific stats.

write-node will write a node 
to storage, returning the stub 
object which implements IRe-
solve for that backend. It can 
record stats by mutating or 
logging to the session.

anchor-root is called by the 
persistence functionality to 
ensure that the backend knows 
which nodes are roots; this is 
a hint to any sort of garbage 
collectors.

delete-addr removes the giv-
en node from storage.

TestingBackend is a simple 
implementation of a backend 
which bypasses serialization and 

is entirely in memory. It can be 
a useful reference for the bare 
minimum implementation of a 
backend.

hitchhiker.tree.messaging/

IOperation

This protocol describes an 
operation to the tree. Cur-
rently, there are only Inser-
tOp and DeleteOp, but arbitrary 
mutation is supported by the 
data structure.

Useful APIs

hitchhiker.tree.core/flush-tree

This takes a tree, does a depth-
first search to ensure each 
node’s children are durably per-
sisted before flushing the node 
itself. It returns the updated tree 
and the session under which 
the IO was performed. flush-

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


27hacker bits

Reprinted with permission of the original author. First appeared at github.com/datacrypt-project/hitchhiker-tree.

tree does block on the writing 
IO—​a future improvement would 
be to make that non-blocking.

hitchhiker.tree.messaging/enqueue

This is the fundamental opera-
tion for adding to the event log 
in a hitchhiker tree. enqueue will 
handle the appending, overflow, 
and correct propagation of oper-
ations through the tree.

hitchhiker.tree.messaging/apply-

ops-in-path

This is the fundamental opera-
tion for reading from the event 
log in a hitchhiker tree. This 
finds all the relevant operations 
on the path to a leaf node, and 
returns the data that leaf node 
would contain if all the opera-
tions along the path were fully 

committed. This is conveniently 
designed to work on entire leaf 
nodes, so that iteration is as 
easy as using the same logic as 
a non-augmented B+ tree, and 
simply expanding each leaf node 
from the standard iteration.

lookup, insert, delete, lookup-
fwd-iter

These are the basic operations 
on hitchhiker trees. There are 
implementations in hitchhiker.
tree.core and hitchhiker.tree.
messaging, which leverage their 
respective tree variants. They 
correspond to get, assoc, dissoc, 
and subseq on sorted maps.

hitchhiker.core.b-tree

This is how to make a new hitch-
hiker or B+ tree. You should 
either use the above mutation 

functions on it from one or the 
other namespace; it probably 
won’t work if you mix them.

Related work
Hitchhiker trees are made per-
sistent with the same method, 
path copying, as used by Oka-
saki. The improved write perfor-
mance is made possible thanks 
to the same buffering technique 
as a fractal tree index. As it 
turns out, after I implemented 
the fractal tree, I spoke with a 
former employee of Tokutek, a 
company that commercialized 
fractal tree indices. That person 
told me that we’d actually imple-
mented fractal reads identically! 
This is funny because there’s no 
documentation anywhere about 
how exactly you should struc-
ture your code to compute the 
query. 

We’d actually implemented 
fractal reads identically! 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2aYFhtv
http://bit.ly/2aYEHvU
http://bit.ly/2aYEHvU
http://bit.ly/2aYFgG4


28 hacker bits

Opinion

Don't add your 2 cents
By DEREK SIVERS
Photograph by Maura Teague via flickr.com

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bkhjIB


29hacker bits

My friend Simone in Korea 
just became the big boss 
at work, managing other 

people for the first time.
Usually we talk about 

Debussy, Steven Pressfield, 
and Tavira, but today she asked 
if I had any non-obvious advice 
on management.

My only advice: don’t add 
your two cents to their ideas.

“My two cents” is American 
slang for adding a small opinion 
or suggestion to someone else’s 
thing.

Here’s how it plays out at 
work:

Employee:
“I’ve been working for the 
past two weeks on this 
new design. What do you 
think?”

Boss:
“I like it! Really good. May-
be just a darker shade of 
blue there, and change the 
word ‘giant’ to ‘huge’. Oth-
er than that, it’s great!”

Now, because the boss said 
so, the creator of that design 
will have to change it just a little 
bit.

Because of that small 
change, that person no longer 
feels full ownership of their 
project. (Then you wonder why 
they’re not motivated!)

Imagine this instead:

Employee:
“I’ve been working for the 
past two weeks on this 
new design. What do you 
think?”

Boss:
“It’s perfect. Great work!”

This slight change made a 
huge difference in the psychol-
ogy of motivation. Now that 
person can feel full ownership of 
this project, which is more likely 
to lead to more involvement and 
commitment for future projects.

The boss’s opinion is no bet-
ter than anyone else’s. But once 
you become the boss, unfortu-
nately, your opinion is danger-

ous because it’s not just one 
person’s opinion anymore — it’s 
a command! So adding your two 
cents can really hurt morale.

A business should not focus 
on the boss, so this restraint 
is healthy. You shouldn’t give 
your opinion on everything just 
because you can.

Obviously, if there’s more 
than “2 cents” worth of stuff 
that needs to change, then this 
rule does not apply.

But if your contribution is 
small and probably just a mean-
ingless opinion, just let it go. Let 
the other person feel full owner-
ship of the idea, instead. 

For more thoughts along this 
line, read the great book “What 
Got You Here Won’t Get You 
There”.

 

Reprinted with permission of the original author. First appeared as a working document at sivers.org.

Once you become the boss,
unfortunately, your opinion is dangerous
because it’s not just 
one person’s opinion anymore.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bxFzFz
http://bit.ly/2bxECNp
http://bit.ly/2bxF0eU
http://bit.ly/2bxEU7k
http://bit.ly/2bxFemj
http://bit.ly/2bxEf5E
http://bit.ly/2bxEf5E
http://bit.ly/2bxEf5E
http://bit.ly/2bxF1Q8


30 hacker bits

Programming

Why Angular 2 
switched to TypeScript
By VICTOR SAVKIN

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


31hacker bits

Angular 2 is written in TypeScript. In this 
article I will talk about why we made the 
decision. I’ll also share my experience of 

working with TypeScript: how it affects the way I 
write and refactor my code.

I like TypeScript, but you don’t 
have to
Even though Angular 2 is written in TypeScript, 
you don’t have to use it to write Angular 2 appli-
cations. The framework also works great with ES5, 
ES6, and Dart.

TypeScript has great tools
The biggest selling point of TypeScript is tool-
ing. It provides advanced autocompletion, naviga-
tion, and refactoring. Having such tools is almost 
a requirement for large projects. Without them 
the fear of changing the code puts the code base 
in a semi-read-only state, and makes large-scale 
refactorings very risky and costly.

TypeScript is not the only typed language that 
compiles to JavaScript. There are other languag-
es with stronger type systems that in theory can 
provide absolutely phenomenal tooling. But in 
practice most of them do not have anything other 
than a compiler. 

This is because building rich dev tools has 
to be an explicit goal from day one, which it has 
been for the TypeScript team. That is why they 
built language services that can be used by ed-
itors to provide type checking and autocomple-

tion. If you have wondered why there are so many 
editors with great TypeScript supports, the answer 
is the language services.

The fact that intellisense and basic refactor-
ings (e.g., rename a symbol) are reliable makes a 
huge impact on the process of writing and es-
pecially refactoring code. Although it is hard to 
measure, I feel that the refactorings that would 
have taken a few days before can now be done in 
less than a day.

While TypeScript greatly improves the code 
editing experience, it makes the dev setup more 
complex, especially comparing to dropping an ES5 
script on a page. In addition, you cannot use tools 
analyzing JavaScript source code (e.g., JSHint), but 
there are usually adequate replacements.

TypeScript is a superset of 
JavaScript
Since TypeScript is a superset of JavaScript, you 
don’t need to go through a big rewrite to migrate 
to it. You can do it gradually, one module at a 
time.

Just pick a module, rename the .js files into .
ts, then incrementally add type annotations. When 
you are done with this module, pick the next one. 
Once the whole code base is typed, you can start 
tweaking the compiler settings to make it more 
strict.

This process can take some time, but it was 
not a big problem for Angular 2, when we were 
migrating to TypeScript. Doing it gradually al-
lowed us to keep developing new functionality 
and fixing bugs during the transition.

Typescript provides advanced 
autocompletion, navigation, 
and refactoring. Having such tools is 
almost a requirement for large projects.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


32 hacker bits

TypeScript makes abstractions 
explicit
A good design is all about well-defined interfaces. 
And it is much easier to express the idea of an 
interface in a language that supports them.

For instance, imagine a book-selling applica-
tion where a purchase can be made by either a 
registered user through the UI or by an external 
system through some sort of an API (see Figure 
above).

As you can see, both classes play the role of 
a purchaser. Despite being extremely important 
for the application, the notion of a purchaser is 
not clearly expressed in the code. There is no file 
named purchaser.js. And as a result, it is possible 
for someone modifying the code to miss the fact 
that this role even exists.

function processPurchase(purchaser, details){ } 

class User { } 

class ExternalSystem { }

It is hard, just by looking at the code to tell 
what objects can play the role of a purchaser, 
and what methods this role has. We do not know 
for sure, and we will not get much help from our 
tools. We have to infer this information manually, 
which is slow and error-prone.

Now, compare it with a version where we ex-
plicitly define the Purchaser interface.

interface Purchaser {
  id: int; bankAccount: Account;

}

class User implements Purchaser {} 

class ExternalSystem implements Purchaser {}

The typed version clearly states that we have 
the Purchaser interface, and the User and Exter-
nalSystem classes implement it. So TypeScript 
interfaces allow us to define abstractions/proto-
cols/roles.

It is important to realize that TypeScript does 
not force us to introduce extra abstractions. The 
Purchaser abstraction is present in the JavaScript 
version of the code, but it is not explicitly defined.

In a statically-typed language, boundaries 
between subsystems are defined using interfaces. 
Since JavaScript lacks interfaces, boundaries are 
not well expressed in plain JavaScript. Not being 
able to clearly see the boundaries, developers 
start depending on concrete types instead of ab-
stract interfaces, which lead to tight coupling.

My experience of working on Angular 2 before 
and after our transition to TypeScript reinforced 
this belief. Defining an interface forces me to 
think about the API boundaries, helps me define 
the public interfaces of subsystems, and exposes 
incidental coupling.

TypeScript makes code easier to 
read and understand
Yes, I know it does not seem intuitive. Let me try 
to illustrate what I mean with an example. Let’s 
look at this function jQuery.ajax(). What kind of 
information can we get from its signature?

  Book-selling application

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


33hacker bits

jQuery.ajax(url, settings)

The only thing we can tell for sure is that 
the function takes two arguments. We can guess 
the types. Maybe the first one is a string and the 
second one is a configuration object. But it is just 
a guess, and we might be wrong. We have no idea 
what options go into the settings object (neither 
their names nor their types), or what this function 
returns.

There is no way we can call this function with-
out checking the source code or the documen-
tation. Checking the source code is not a good 
option — the point of having functions and classes 
is to be able to use them without knowing how 
they are implemented. 

In other words, we should rely on their inter-
faces, not on their implementation. We can check 
the documentation, but it is not the best develop-
er experience — it takes additional time, and the 
docs are often out-of-date.

So although it is easy to read jQuery.ajax(url, 
settings), to really understand how to call this 
function, we need to either read its implementa-
tion or its docs.

Now, contrast it with a typed version.

ajax(url: string, 
     settings?: JQueryAjaxSettings): JQueryXHR; 

interface JQueryAjaxSettings { 
  async?: boolean; 
  cache?: boolean; 
  contentType?: any; 
  headers?: { [key: string]: any; }; 

  //... 
} 

interface JQueryXHR { 
  responseJSON?: any; //... 
}

It gives us a lot more information.

•	 The first argument of this function is a string.

•	 The settings argument is optional. We can see 
all the options that can be passed into the 
function, and not only their names, but also 
their types.

•	 The function returns a JQueryXHR object, and 
we can see its properties and functions.

The typed signature is certainly longer than 
the untyped one, but :string, :JQueryAjaxSettings, 
and JQueryXHR are not clutter. They are important 
documentation that improves the comprehensibil-
ity of the code. 

We can understand the code to a much greater 
degree without having to dive into the implemen-
tation or reading the docs. My personal experi-
ence is that I can read the typed code faster be-
cause types provide more context to understand 
the code. But if any of the readers can find a study 
on how types affect code readability, please leave 
a comment.

One thing that is different about TypeScript 
comparing to many other languages compiled to 
JavaScript is that its type annotations are optional, 
and jQuery.ajax(url, settings) is still valid Type-
Script. 

So instead of an on-off switch, TypeScript’s 

Defining an interface forces me to think 
about the API boundaries, helps me define 
the public interfaces of subsystems, 
and exposes incidental coupling.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


34 hacker bits

types are more of a dial. If you find that the code 
is trivial to read and understand without type an-
notations, do not use them. Use types only when 
they add value.

Does TypeScript limit 
expressiveness?
Dynamically-typed languages have inferior tool-
ing, but they are more malleable and expressive. I 
think using TypeScript makes your code more rig-
id, but to a much lesser degree than people think.

Let me show you what I mean. Let’s say I use 
ImmutableJS to define the Person record.

const PersonRecord = Record({name:null, 
age:null}); 

function createPerson(name, age) { 
  return new PersonRecord({name, age}); 
} 

const p = createPerson("Jim", 44); 

expect(p.name).toEqual("Jim");

How do we type the record? Let’s start with defin-
ing an interface called Person.

interface Person { name: string, age: number };

If we try to do the following:

function createPerson(name: string, 
                      age: number): Person { 
  return new PersonRecord({name, age}); 
}

The TypeScript compiler will complain. It does 
not know that PersonRecord is actually compati-
ble with Person because PersonRecord is created 
reflectively. 

Some of you with the FP background are prob-
ably saying: “If only TypeScript had dependent 
types!” But it does not. TypeScript’s type system is 
not the most advanced one. But its goal is differ-
ent. It is not here to prove that the program is 
100% correct. It is about giving you more informa-
tion and enable greater tooling. So it is OK to take 
shortcuts when the type system is not flexible 
enough. 

So we can just cast the created record, as 
follows:

function createPerson(name: string, 
                      age: number): Person { 
  return <any>new PersonRecord({name, age}); 
}

The typed example:

interface Person { name: string, age: number }; 

const PersonRecord = Record({
  name:null, age:null});

function createPerson(name: string, 
                      age: number): Person { 

Using TypeScript makes your code 
more rigid, but to a much lesser 
degree than people think.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


35hacker bits

Reprinted with permission of the original author. First appeared at vsavkin.com.

  return <any>new PersonRecord({name, age}); 
} 

const p = createPerson("Jim", 44); 

expect(p.name).toEqual("Jim");

The reason why it works is because the type 
system is structural. As long as the created object 
has the right fields — name and age — we are good.

You need to embrace the mindset that it is OK 
to take shortcuts when working with TypeScript. 
Only then will you find using the language enjoy-
able. 

For instance, don’t try to add types to some 
funky metaprogramming code — most likely you 
won’t be able to express it statically. Type every-
thing around that code, and tell the typechecker 
to ignore the funky bit. In this case you will not 
lose a lot of expressiveness, and the bulk of your 
code will remain toolable and analyzable.

This is similar to trying to get 100% unit test 
code coverage. Whereas getting 95% is usually not 
that difficult, getting 100% can be challenging, 
and may negatively affect the architecture of your 
application.

The optional type system also preserves the 
JavaScript development workflow. Large parts of 
your application’s code base can be “broken”, but 
you can still run it. TypeScript will keep gener-
ating JavaScript, even when the type checker 
complains. This is extremely useful during devel-
opment.

Why TypeScript?
There are a lot of options available to frontend 
devs today: ES5, ES6 (Babel), TypeScript, Dart, 
PureScript, Elm, etcSo why TypeScript?

Let’s start with ES5. ES5 has one significant 
advantage over TypeScript: it does not require a 
transpiler. This allows you to keep your build set-
up simple. You do not need to set up file watch-
ers, transpile code, and generate source maps. It 
just works.

ES6 requires a transpiler, so the build setup 
will not be much different from TypeScript. But 
it is a standard, which means that every single 
editor and build tool either supports ES6 or will 
support it. This is a weaker argument that it used 
to be as most editors at this point have excellent 
TypeScript support.

Elm and PureScript are elegant languages with 
powerful type systems that can prove a lot more 
about your program than TypeScript can. The 
code written in Elm and PureScript can be a lot 
terser than similar code written in ES5.

Each of these options has pros and cons, but I 
think TypeScript is in a sweet spot that makes it a 
great choice for most projects. 

TypeScript takes 95% of the usefulness of a 
good statically-typed language and brings it to the 
JavaScript ecosystem. You still feel like you write 
ES6: you keep using the same standard library, 
same third-party libraries, same idioms, and 
many of the same tools (e.g., Chrome dev tools). 
It gives you a lot without forcing you out of the 
JavaScript ecosystem. 

TypeScript takes 95% of the usefulness 
of a good statically-typed language and 
brings it to the JavaScript ecosystem. 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bPFUDU


36 hacker bits

Senior engineers 
reduce risk

Programming

By ZACH TELLMAN

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


37hacker bits

If you read articles on career 
development in software, 
you’ll already know there are 

many things a senior engineer 
is not. 

They are not, for instance, 
just someone with ten years of 
experience. They are not just 
someone who maintains a pop-
ular open source project. They 
are not just someone who wrote 
the initial prototype for their 
company’s flagship product.

Instead, senior engineers 
possess many disparate skills, 
the exact composition of which 
varies from author to author. 
These laundry lists are detailed, 
nuanced, and typically leave the 
reader feeling as if they have a 
long way to go.

Empirically, though, there 
are many people who have the 
title “senior engineer” who do 
not possess all these skills. 
Unless all of them can be ex-
plained by title inflation or poor 
management, this is a serious 
disconnect with reality. 

We have to treat these arti-
cles as aspirational: a descrip-

tion of the industry as it should 
be. For someone wanting to 
make a significant, recognized 
impact on their company, today, 
these articles are more distract-
ing than helpful.

Senior engineers reduce 
risk, in every sense. Often, “risk” 
is used to describe technical 
risk, which is that the software 
doesn’t function properly, or is 
never completed at all. 

But there are other issues 
that can prevent the business 
atop the software from succeed-
ing — risks around process, or 
product design, or sales, or the 
company’s culture. 

A senior engineer under-
stands these risks, and mitigates 
them where possible.

Senior engineers 
affect the larger 
system
Most startups die because they 
build the wrong product. The 
core risks are rarely technical; 
if no one wants the product, 

building it well won’t change the 
outcome. 

The most important thing an 
engineer can do during this time 
is either speed up the search, 
or narrow the search space. 
Building prototypes, gaining do-
main expertise, and generating 
metrics all lower the chance the 
company will run out of money.

Once a company finds prod-
uct-market fit, the risks change. 
The product has to work, scale, 
and easily adapt to anything 
learned by the customer-facing 
employees. 

New users introduce techni-
cal risk but, more importantly, 
new hires introduce risk into 
the company’s processes and 
culture. If the company can’t 
make new hires productive, it 
will collapse under the weight of 
its payroll.

The software will need to be 
broken into manageable piec-
es, or else new engineers will 
need to hold the entire growing 
system in their head to be pro-
ductive. Where before there may 
have been one engineer who 

A senior engineer understands 
these risks, and mitigates them 
where possible.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bngLTa
http://bit.ly/2bng3p8


38 hacker bits

handled “talking to customers”, 
the planning process may now 
need to include salespeople. 

Above all, each new hire 
dilutes any clarity that exist-
ed around what the company 
values, and what it doesn’t. Left 
alone, the company will become 
whatever people were used to at 
their last job.

As the company continues 
to grow, any new project will 
require collaboration across 
teams. After a few projects get 
delayed because of one missing 
piece, the leadership will start to 
value predictable results above 
all else. 

Processes will be estab-
lished, recurring “sync” meetings 
will be scheduled. Variance in 
productivity, above or below 
the mean, will be minimized. 
The largest risk is perceived to 
be a small component which is 
never completed, obviating all 
the other related work. In this 
environment, a senior engineer 
is an engineer who works within 
the processes, and even refines 
them, to ensure reliable output.

This narrative arc describes 
the average growing software 
startup, but no company is 
exactly average. The precise 
risks will vary depending on who 
founded the company, what it 
does, and who they hire. 

The senior engineers may 
reduce risk deliberately, or 
simply have the right skill set at 
the right time. A fresh graduate 
with the right domain expertise 
can have a huge impact on the 
larger system without ever un-
derstanding it.

Senior engineers find 
leverage
Impact can be serendipitous, but 
the greatest impact comes from 
a deliberate attempt to effect 
change with the least effort. If 
production is unstable, preclud-
ing a common failure mode will 
have a more immediate impact 
than volunteering for pager 
duty.

If the company is rapidly hir-
ing, improving and standardiz-

ing interview practices will have 
a broader impact than conduct-
ing a dozen phone screens every 
week. 

If there are any junior engi-
neers, spending an hour to talk 
over unfamiliar topics will have 
a longer lasting impact than 
writing more code.

Where possible, solving the 
general form of any problem is 
preferable to solving a single 
instance. However, this is only 
possible if the problem space is 
well understood. 

Premature abstraction, in 
code or elsewhere, introduces 
risk. If the failure modes in pro-
duction are poorly understood, 
volunteering for pager duty may 
be the only way to really help.

Senior engineers are 
storytellers
Most risks, especially where 
managed effectively, never 
come to pass. For this reason, 
it’s often impossible to tell the 
difference between real risk and 

In this environment, a senior engineer 
is an engineer who works within the 
processes, and even refines them, 
to ensure reliable output.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


39hacker bits

perceived risk. 
By the same token, it can 

be difficult to tell the difference 
between real impact and per-
ceived impact. If a senior engi-
neer identifies a significant risk, 
they have to be able to concisely 
explain and prioritize it for a 
non-expert audience.

Some see this as a form 
of corporate politics; a skilled 
storyteller can protect their 
company from non-existent 
risks, and be seen as a hero. But 
the fact that storytelling can be 
misused doesn’t make it invalid, 
just something that should be 
approached with a critical eye.

Senior engineers 
choose companies 
with the right risks
Every company has different 
risks, and so every company ex-
pects something different from 
their senior engineers. An engi-
neer who has spent the last five 
years making small, continuous 
improvements to the processes 

in a larger company may not en-
joy or even understand the sort 
of role expected by a three-per-
son startup. 

The expectation that “senior” 
is a fungible title is both wide-
spread and harmful, leading to 
unrealistic expectations from 
both engineers and companies.

Through trial and error, 
engineers can identify the sorts 
of problems they enjoy solving. 
A senior engineer should find 
a company that both has those 
problems, and knows it. Any-
thing else will lead to frustra-
tion, and eventually apathy.

Likewise, companies should 
try to communicate their risks, 
early and often. If we were to 
judge by what’s asked in inter-
views, most companies believe 
their only risks are technical, but 
that’s absurd. 

The interviewers know the 
real problems facing the com-
pany, but the polite fiction is 
that they’re only temporary, and 
soon everyone will be able to 
focus entirely on the algorithms, 
which are what really matter. 

Since most companies tell the 
same story, candidates have to 
read between the lines to see 
if there’s a good fit. Honesty 
would make things much sim-
pler.

Senior engineers 
know titles don’t 
mean much
Without context, knowing some-
one was a “senior engineer” 
tells you almost nothing. Titles 
can matter a lot in some envi-
ronments, but in those cases 
titles are just another tool for 
reducing risk; if being a senior, 
or staff, or principal engineer is 
the only way to make your voice 
heard, then pursuing those 
titles is worthwhile. More often, 
though, it’s just a distraction. 

Reprinted with permission of the original author. First appeared at medium.com/@ztellman.

The expectation that “senior” is a fungible 
title is both widespread and harmful, 
leading to unrealistic expectations from 
both engineers and companies.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bnh9B3


40 hacker bits

By CLAY MCLEOD

Data

The truth about 
deep learning

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


41hacker bits

Come on people — let’s get 
our act together on deep 
learning. I’ve been study-

ing and writing about DL for 
close to two years now, and it 
still amazes me the misinforma-
tion surrounding this relatively 
complex learning algorithm.

This post is not about how 
deep learning is or is not over-
hyped, as that is a well docu-
mented debate. Rather, it’s a 
jumping off point for a (hopeful-
ly) fresh, concise understanding 
of deep learning and its impli-
cations. This discussion/rant 
is somewhat off the cuff, but 
the whole point is to encourage 
those of us in the machine learn-
ing community to think clear-
ly about deep learning. 

Let’s be bold and try to 
make some claims based on 
actual science about whether 
or not this technology will or 
will not produce artificial in-
telligence. After all, aren’t we 

supposed to be the leaders in 
this field and the few that under-
stand its intricacies and implica-
tions? 

With all of the news on arti-
ficial intelligence breakthroughs 
and non-industry commentators 
making rash conclusions about 
how deep learning will change 
the world, don’t we owe it to the 
world to at least have our shit 
together? It feels like most of us 
are just sitting around waiting 
for others to figure that out for 
us.

[Note added on 05/05/16: 
Keep in mind that this is a blog 
post, not an academic paper. My 
goal was to express my thoughts 
and inspire some discussion 
about how we should contextu-
alize deep learning, not to lay 
out a deeply technical argument. 
Obviously, a discussion of that 
magnitude could not be achieved 
in a few hundred words, and 
this post is aimed at the ma-

chine learning layman none-
the-less. I leave that technical 
discussion as an exercise to the 
readers (feel free to email me). 
One article cannot be all things 
to all people.]

The problem
Even the most academic among 
us mistakenly merge two very 
different schools of thought in 
our discussions on deep learn-
ing:

1.	 The benefits of neural net-
works over other learning 
algorithms.

2.	 The benefits of a “deep” 
neural network architec-
ture over a “shallow” archi-
tecture.

Much of the debate going 
on is surprisingly still concerned 
with the first point instead of 
the second. Let’s be clear — 

Even the most academic among 
us mistakenly merge two very 
different schools of thought in our 
discussions on deep learning.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bDbmoz
http://bit.ly/2bDbO6j
http://bit.ly/2bDblRx
http://bit.ly/2bDbF2I
http://bit.ly/2bDbbts
http://bit.ly/2bDc5pS


42 hacker bits

ing artificially intelligent world, 
we must answer the following 
question: what does increasing 
computing power and adding 
layers to a neural network actu-
ally allow us to do better than a 
normal neural network? 

Answering this question 
could yield a truly fruitful dis-
cussion on deep learning.

The answer (?)
Here is my personal answer to 
the second question — deep 
neural networks are more useful 
than traditional neural networks 
for two reasons:

1.	 The automatic encoding of 
features which previous-
ly had to be hand engi-
neered.

2.	 The exploitation of struc-
turally/spatially associated 
features.

At the risk of sounding bold, 
that’s it — if you believe there 
is another benefit which is not 
somehow encompassed by these 
two traits, please let me know. 
These are the only two that I 
have come across in all my time 
working with deep learning.

[Note added 05/05/16: In 
the responses, the most com-
mon possible third benefit is 
the configurability of layers 
within a model. Although this is 
quite true, it’s not new, nor is it 
philosophically unique to deep 
learning. Fundamentally, this is 
just a more frictionless version 
of pipelining, which we have 
been doing for a while. I have 
not (yet) heard a good argument 
against this proof by decompo-
sition.]

If this was true, what would 
we expect to see in the academ-
ic landscape? We might expect 
that deep neural networks would 
be useful in situations where the 

What does increasing computing 
power and adding layers to a neural 
network actually allow us to do better 
than a normal neural network?

the inspiration for, benefits of, 
and detriments against neural 
networks are all well document-
ed in the literature. Why are we 
still talking about this like the 
discussion is new? 

Nothing is more frustrating 
when discussing deep learn-
ing than someone explaining 
their views on why deep neural 
networks are “modeled after 
how the human brain works” 
(much less true than the name 
suggests) and thus are “the 
key to unlocking true artificial 
intelligence.” This is an obvious 
straw man, since this discussion 
is essentially the same as was 
produced when plain old neural 
networks were introduced.

The idea I’d like for you to 
take away here is that we are 
not asking the right question 
for the answer which we desire. 
If we want to know how one 
can contextualize deep neural 
networks in the ever-increas-

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


43hacker bits

data has some spatial qualities 
that can be exploited, such as 
image data, audio data, natural 
language processing, etc. 

Although we might say there 
are many areas that could bene-
fit from that spatial exploitation, 
we would certainly not find that 
this algorithm is a magical cure 
for any data that you throw at it. 

The words “deep learning” 
will not magically cure cancer 
(unless you find some way to 
spatially exploit data associ-
ated with cancer, as had been 
done with the human genome), 
there is no reason to believe it 
will start thinking and suddenly 
become sentient. 

We might see self-driving 
cars that assist in simply keep-
ing the car between the lines, 
but not one which can decide 
whether to protect its own driver 
or the pedestrian walking the 
street. 

Hell, even those that actually 

read the papers on AlphaGo will 
realize that deep learning was 
simply a tool used by tradi-
tional AI algorithms. Lastly, we 
might find that, once again, that 
the golden mean is generally 
spot on, and that deep learning 
is not the answer to all machine 
learning problems, but also not 
completely baseless.

Since I am feeling especially 
bold, I will make another pre-
diction: deep learning will not 
produce the universal algorithm. 
There is simply not enough 
there to create such a complex 
system. 

However, deep learning is an 
extremely useful tool. Where 
will it be most useful in AI? I 
predict it will be as a sensory 
learning system (vision, audio, 
etc.) that exploits some spatially 
[MK2] characteristics in data that 
would otherwise go unaccount-
ed for, which, like in AlphaGo, 
must be used by a truly artificial-

ly intelligent system as an input.
Stop studying deep learn-

ing thinking it will lay all other 
algorithms to waste no matter 
the scenario. Stop throwing 
deep learning at every dataset 
you see. Start experimenting 
with these technologies outside 
of the “hello world” examples 
in the packages you use — you 
will quickly learn what they are 
actually useful for. 

Most of all, let’s stop view-
ing deep learning as the “almost 
there!!!” universal algorithm 
and start viewing it for what it 
truly is: a tool that is useful in 
assisting a computer’s ability to 
perceive. 

Start viewing deep learning for 
what it truly is: 
a tool that is useful in assisting a 
computer’s ability to perceive.

Reprinted with permission of the original author. First appeared at blog.claymcleod.io.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://go.nature.com/2bDaz7n
http://bit.ly/2bDaSyS
http://bit.ly/2bDaYGR


44 hacker bits

Programming

A beginners guide to 
thinking in SQL
By SOHAM CHETAN KAMANI

Photograph by fruity monkey via flickr.com

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
https://www.flickr.com/photos/gilesrcook/5346737067/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


45hacker bits

Is it “SELECT * WHERE a=b FROM c” or “SE-
LECT WHERE a=b FROM c ON *” ?

If you’re anything like me, SQL is one of those 
things that may look easy at first (it reads just 
like regular English!), but for some reason you 

can’t help but google the correct syntax for every 
silly query.

Then, you get to joins, aggregation, and sub-
queries and everything you read just seems like 
gibberish. Something like Figure 1.

Yikes! This would scare any newcomer, or 
even an intermediate developer looking at SQL for 
the first time. It shouldn’t have to be like this.

It’s always easy to remember something which 
is intuitive, and through this guide, I hope to ease 
the barrier of entry for SQL newbies, and even 
for people who have worked with SQL, but want a 
fresh perspective.

All queries used in this post are made for 
PostgreSQL, although SQL syntax is very similar 
across databases, so some of these would work on 
MySQL, or other SQL databases as well.

1. The three magic words
Although there are lots of keywords used in 
SQL, SELECT, FROM, and WHERE are the ones you would 
be using in almost every query that you make. 
After reading ahead, you would realize that these 
key words represent the most fundamental aspect 
of querying a database, and other, more complex 
queries are simply extensions of them.

2. Our database
Let’s take a look at the sample data we will be us-
ing throughout the rest of this article (see Figure 
2).

We have a library, with books and members. 
We also have another table for borrowings made.

•	 Our “books” table has information about the 
title, author, date of publication, and stock 
available. Pretty straightforward.

•	 Our “members” table only has the first and last 
name of all registered members.

•	 The “borrowings” table has information on the 
books borrowed by the members. The book-
id column refers to the id of the book in the 
“books” table that was borrowed, and the mem-
berid column corresponds to the member in 
the “members” table that borrowed the book. 
We also have the dates when the books were 
borrowed, and when they are expected to be 
returned.

3. Simple Query
Let’s get started with our first query: We want 
the names and ids of all books written by “Dan 
Brown”.

Our query would be :

SELECT bookid AS “id”, title
FROM books
WHERE author=’Dan Brown’;

Which would give us:

SELECT members.firstname || ' ' || members.lastname
AS "Full Name"
FROM borrowings
JOIN members
ON members.memberid=borrowings.memberid
JOIN books
ON books.bookid=borrowings.bookid
WHERE borrowings.bookid IN (SELECT bookid
  FROM books
  WHERE stock>(SELECT avg(stock)
    FROM books))
GROUP BY members.firstname, members.lastname;

  Figure 1: SQL gibberish

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


46 hacker bits

Simple enough. However, let’s try to dissect 
the query to really understand what’s happening.

3.1 FROM – Where do we get the data from?

This might seem obvious now, but it actually mat-
ters a lot when we get to joins and subqueries. 
FROM is there to point our query to its table, the 
place where it has to look for the data. This table 
can simply be one that already exists (like the 
previous example), or a table which we generate 
through joins or subqueries.

3.2 WHERE – What data should we show?

WHERE, quite simply acts to filter out the rows that 
we want to show. In our case the only rows we 
want to consider are those where the value of 
the author column is “Dan Brown.”

3.3 SELECT – How should we show it?

Now that we got all the rows we wanted from the 
table that we wanted, the question that arises is 
what exactly do we want to show out of the data 
that we got? In our case we only need the name 
and id of the book, so that’s what we SELECT. We 
can also rename the columns we want to show 
with AS.

In the end, you can represent the entire query 
as a simple diagram (see Figure 3).

4. Joins
We would now like to see the names of all books 
(not unique) written by “Dan Brown” that were 
borrowed, along with the date of return:

SELECT books.title AS “Title”, 
borrowings.returndate AS “Return Date”

FROM borrowings JOIN books ON 
borrowings.bookid=books.bookid

WHERE books.author=’Dan Brown’;

Which would give us:

Most of the query looks similar to our pre-
vious example except for the FROM section. What 
this means is that the table we are querying from 
has changed. We are neither querying the “books” 
table nor the “borrowings” table. Instead, we are 
querying a new table formed by joining these two 
tables.

borrowings JOIN books ON borrowings.bookid=-

books.bookid can be considered as another table 
formed by combining all entries from the books 
table and the borrowings table, as long as these 
entries have the same bookid in each table. The 
resultant table would be (see Figure 4).

Now, we just query this table like we did in the 
simple example above. This means that every time 
we join a table, we just have to worry about how 
we join our tables. After that, the query is reduced 

  Figure 2: Sample data

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


47hacker bits

in complexity to the level of the “Simple Query” 
example.

Let’s try a slightly more complex join where 
we join 2 tables.

We now want the first name and last name of 
everyone who has borrowed a book written by 
“Dan Brown”.

This time, we’ll take a bottom-up approach to 
get our result:

•	 Step 1 — Where do we get the data from? To 
get the result we want, we would have to join 
the “member” table, as well as the “books” 
table with the “borrowings” table. The join 
section of the query would look like:

borrowings
JOIN books ON borrowings.bookid=books.bookid
JOIN members ON members.memberid=borrowings.
memberid

See Figure 5 for the resulting table.

•	 Step 2 – What data should we show? We are 
only concerned with data where the author is 
“Dan Brown”.

WHERE books.author=’Dan Brown’

•	 Step 3 – How should we show it? Now that we 
got the data we want, we just want to show 
the first name and the last name of the mem-
bers who borrowed it:

SELECT
members.firstname AS “First Name”,
members.lastname AS “Last Name”

Awesome! Now we just have to combine the 3 
components of our query and we get:

SELECT
members.firstname AS “First Name”,
members.lastname AS “Last Name”
FROM borrowings
JOIN books ON borrowings.bookid=books.bookid
JOIN members ON members.memberid=borrowings.
memberid
WHERE books.author=’Dan Brown’;

Which gives us:

Awesome! However, the names are repeating 
(non-unique). We’ll get to solving that in a bit…

5. Aggregations
In a nutshell, aggregations are used to convert 
many rows into a single row. The only thing that 
changes is the logic used on each column for its 
aggregation.

Let’s continue with our previous example, 
where we saw that there were repetitions in the 
results we got from our query. We know that Ellen 
Horton borrowed more than one book, but this is 
not really the best way to show this information. 
We can write another query:

SELECT
members.firstname AS “First Name”,

  Figure 3: Query as a simple diagram

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


48 hacker bits

members.lastname AS “Last Name”,
count(*) AS “Number of books borrowed”
FROM borrowings
JOIN books ON borrowings.bookid=books.bookid
JOIN members ON members.memberid=borrowings.
memberid
WHERE books.author=’Dan Brown’
GROUP BY members.firstname, members.lastname;

Which would give us our required result:

 

Almost all aggregations we do come with 
the GROUP BY statement. What this does is convert 
the table otherwise returned by the query into 
groups of tables. Each group corresponds to a 
unique value (or group of values) of columns, 
which we specify in the GROUP BY statement.

In this example, we are converting the result 
we got in the previous exercise into groups of 
rows. We also perform an aggregation in this 
case count, which converts multiple rows into a 
single value (which in our case is the number of 
rows). This value is then attributed to each group.

Each row in the result represents the aggregat-
ed result of each of our groups (see Figure 5).

We can also logically come to the conclusion 
that all fields in the result must either be specified 
in the GROUP BY statement, or have an aggregation 
done on them. This is because all other fields 
will vary row wise, and if they were SELECTed, we 
wouldn’t know which of their possible values to 
take.

In the above example, the count function 

worked on all rows (since we are only counting the 
number of rows). Other functions like sum or max 
would work on only a specific row. For example, 
if we want the total stock of all books written by 
each author, we would query:

SELECT author, sum(stock)
FROM books
GROUP BY author;

And get the result:

Here the sum function, only works on 
the stock column, summing all values for each 
group.

6. Subqueries
Sub queries are regular SQL queries that are em-
bedded inside larger queries.

There are 3 different types of subqueries, 
based on what they return. 

6.1 Two-dimensional table

These are queries that return more than one col-
umn. A good example is the query we performed 
in the previous aggregation exercise. As a subque-
ry, these simply return another table, which can 
be queried further. From the previous exercise, if 
we only want the stock of books written by “Robin 

  Figure 4: Resultant table from JOIN

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


49hacker bits

Sharma”, one way of getting that result would be 
to use sub-queries:

SELECT *
FROM (SELECT author, sum(stock)
  FROM books
  GROUP BY author) AS results
WHERE author=’Robin Sharma’;

Result:

6.2 One-dimensional array

Queries which return multiple rows of a single 
column can be used as arrays, in addition to being 
used as two-dimensional tables.

For example, let’s say we want to get the titles 
and ids of all books written by an author, whose 
total stock of books is greater than 3. 
We can break this down into 2 steps:

1.	 Get the list of authors with total stock of 
books greater than 3. Building on top of our 
previous example, we can write: 

SELECT author
FROM (SELECT author, sum(stock)
  FROM books
  GROUP BY author) AS results
WHERE sum > 3;

Which gives us:

Which can also be written as: [‘Robin Shar-
ma’, ‘Dan Brown’] 

2.	 We then use this result in our next query: 

SELECT title, bookid
FROM books
WHERE author IN (SELECT author
  FROM (SELECT author, sum(stock)
  FROM books
  GROUP BY author) AS results
  WHERE sum > 3);

Which gives us:

This is equivalent to writing:

SELECT title, bookid
FROM books
WHERE author IN (‘Robin Sharma’, ‘Dan Brown’);

6.3 Single values

These are queries whose results have only one 
row and one column. These can be treated as a 
constant value, and can be used anywhere a value 
is used, like for comparison operators. They can 
also be used like two-dimensional tables, as well 

  Figure 5: Aggregation result

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


50 hacker bits

as an array containing 1 element.
As an example, let’s find out information 

about all books having stock above the average 
stock of books present.

The average stock can be queried using:

select avg(stock) from books;

Which gives us:

Which can also be used as the scalar value 3.
So now, we can finally write our query:

SELECT *
FROM books
WHERE stock>(SELECT avg(stock) FROM books);

Which is equivalent to writing:

SELECT *
FROM books
WHERE stock>3.000

And which gives us:

7. Write operations
Most of the write operations in a database are 
pretty straightforward, as compared to the more 
complex read queries.

7.1 Update

The syntax of UPDATE queries is semantically simi-
lar to read queries. The only difference however, 
is that instead of SELECTing columns from a bunch 
of rows, we SET those columns instead.

If we suddenly lost all of our books written by 
“Dan Brown”, we would like to update the stock to 
make it 0. For this we would write:

UPDATE books
SET stock=0
WHERE author=’Dan Brown’;

WHERE still performs the same function here, 
which is that of choosing rows. Instead of SELECT 
which we used in our read queries, we now 
use SET. However, now, in addition to mentioning 
the column names, you also have to mention the 
new value of the columns in the selected rows as 
well.

7.2 Delete

A DELETE query is simply a SELECT, or an UPDATE que-
ry without the column names. Seriously. As 
in SELECT and UPDATE, the WHERE clause remains as 
it is, selecting rows to be deleted. Since a delete 
operation removes an entire row, there is no 
such thing as specifying column names to delete. 
Hence, instead of updating the stock to 0, if we 
just deleted the entries from Dan Brown all to-
gether, we would write:

Most of the write operations in a 
database are pretty straightforward, 
as compared to the more complex 
read queries.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


51hacker bits

DELETE FROM books
WHERE author=’Dan Brown’;

7.3 Insert

Possibly the only outlier from the other query 
types is the INSERT query. Its format is:

INSERT INTO x
  (a,b,c)
VALUES
  (x, y, z);

Where a, b, c are the column names and x, y, 
and z are the values to be inserted into those col-
umns, in the same order in which they are speci-
fied. That’s pretty much all there is to it.

For a more concrete example, here is 
the INSERT query to input the entire data of the 
“books” table:

INSERT INTO books
  (bookid,title,author,published,stock)
VALUES

  (1,’Scion of Ikshvaku’,’Amish Tripa-
thi’,’06-22-2015’,2),

  (2,’The Lost Symbol’,’Dan 
Brown’,’07-22-2010’,3),

  (3,’Who Will Cry When You Die?’,’Robin Shar-
ma’,’06-15-2006’,4),

  (4,’Inferno’,’Dan Brown’,’05-05-2014’,3),

  (5,’The Fault in our Stars’,’John 
Green’,’01-03-2015’,3);

8. Feedback
Now that we have come to the end of the guide, 
it’s time for a small test. Take a look at the first 
query at the very beginning of this post. Can 
you try to figure out what it does? Try breaking 
it down into its SELECT, FROM, WHERE, GROUP BY, and 
subquery components.

Here it is written in a more readable way:

SELECT members.firstname || ‘ ‘ || members.last-
name AS “Full Name”

FROM borrowings
JOIN members
ON members.memberid=borrowings.memberid
JOIN books
ON books.bookid=borrowings.bookid

WHERE borrowings.bookid IN (SELECT bookid FROM 
books WHERE stock>  (SELECT avg(stock) FROM 
books)  )

GROUP BY members.firstname, members.lastname;

It’s actually the list of all members who bor-
rowed any book with a total stock that was above 
average.

Result:

Hopefully, you were able to get the answer no 
sweat, but if not, I would love your feedback or 
comments on how I could make this post better. 
Cheers! 

Possibly the only outlier from the other 
query types is the INSERT query.

Reprinted with permission of the original author. First appeared at sohamkamani.com/blog.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2boDU7F


52 hacker bits

Data

AI, Apple and Google
By BENEDICT EVANS

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


53hacker bits

(Note: for a good introduction 
to the history and current state 
of AI, see my colleague Frank 
Chen’s presentation here.)

In the last couple of years, 
magic started happening in AI. 
Techniques started working, 

or started working much bet-
ter, and new techniques have 
appeared, especially around ma-
chine learning (‘ML’), and when 
those were applied to some 
long-standing and important use 
cases, we started getting dra-
matically better results. 

For example, the error rates 
for image recognition, speech 
recognition and natural lan-
guage processing have collapsed 
to close to human rates, at least 
on some measurements. 

So you can say to your 
phone: ‘show me pictures of my 
dog at the beach’ and a speech 
recognition system turns the 
audio into text, natural language 
processing takes the text, works 
out that this is a photo query 
and hands it off to your photo 
app, and your photo app, which 
has used ML systems to tag your 

photos with ‘dog’ and ‘beach’, 
runs a database query and 
shows you the tagged images. 
Magic. 

There are really two things 
going on here – you’re using 
voice to fill in a dialogue box for 
a query, and that dialogue box 
can run queries that might not 
have been possible before. Both 
of these are enabled by machine 
learning, but they’re built quite 
separately, and indeed the most 
interesting part is not the voice 
but the query. 

In fact, the important struc-
tural change behind being able 
to ask for ‘pictures with dogs at 
the beach’ is not that the com-
puter can find it but that the 
computer has worked out, itself, 
how to find it. You give it a mil-
lion pictures labelled ‘this has a 
dog in it’ and a million labelled 
‘this doesn’t have a dog’ and it 
works out how to work out what 
a dog looks like. 

Now, try that with ‘custom-
ers in this data set who were 
about to churn’, or ‘this network 
had a security breach’, or ‘sto-
ries that people read and shared 
a lot’. Then try it without labels 

(‘unsupervised’ rather than ‘su-
pervised’ learning). 

Today you would spend 
hours or weeks in data analysis 
tools looking for the right crite-
ria to find these, and you’d need 
people doing that work – sorting 
and re-sorting that Excel table 
and eyeballing for the weird 
result, metaphorically speaking, 
but with a million rows and a 
thousand columns.  

Machine learning offers 
the promise that a lot of very 
large and very boring analyses 
of data can be automated – not 
just running the search, but 
working out what the search 
should be to find the result you 
want. 

That is, the eye-catching 
demos of speech interfaces or 
image recognition are just the 
most visible demos of the un-
derlying techniques, but those 
have much broader applications 
– you can also apply them to a 
keyboard, a music recommen-
dation system, a network secu-
rity model or a self-driving car. 
Maybe. 

This is clearly a fundamental 
change for Google. Narrowly, 

Machine learning offers the promise 
that a lot of very large and very boring 
analyses of data can be automated.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bM42ay


54 hacker bits

image and speech recognition 
mean that it will be able to un-
derstand questions better and 
index audio, images and video 
better. But more importantly, 
it will answer questions better, 
and answer questions that it 
could never really answer before 
at all. Hence, as we saw at Goo-
gle IO, the company is being re-
centred on these techniques. 

And of course, all of these 
techniques will be used in differ-
ent ways to varying degrees for 
different use cases, just as Al-
phaGo uses a range of different 
techniques. The thing that gets 
the attention is ‘Google Assis-
tant — a front-end using voice 
and analysis of your behaviour 
to try both to capture questions 
better and address some ques-
tions before they’re asked. 

But that’s just the tip of the 
spear — the real change is in 
the quality of understanding of 
the corpus of data that Google 
has gathered, and in the kind of 
queries that Google will be able 
to answer in all sorts of different 
products. That’s really just at 
the very beginning right now. 

The same applies in differ-
ent ways to Microsoft, which 
(having missed mobile entire-
ly) is creating cloud-based tools 
to allow developers to build 
their own applications on these 
techniques, and for Facebook 
(what is the newsfeed if not a 
machine learning application?), 
and indeed for IBM. Anyone who 
handles lots of data for mon-
ey, or helps other people do it, 
will change, and there will be a 
whole bunch of new companies 
created around this. 

On the other hand, while we 
have magic we do not have HAL 
9000 — we do not have a sys-
tem that is close to human intel-
ligence (so-called ‘general AI’). 
Nor really do we have a good 
theory as to what that would 
mean — whether human intelli-
gence is the sum of techniques 
and ideas we already have, but 
more, or whether there is some-
thing else. Rather, we have a 
bunch of tools that need to be 
built and linked together. 

I can ask Google or Siri to 
show me pictures of my dog on 
a beach because Google and 

Apple have linked together tools 
to do that, but I can’t ask it to 
book me a restaurant unless 
they’ve added an API integra-
tion with OpenTable. This is the 
fundamental challenge for Siri, 
Google Assistant or any chat bot 
(as I discussed here) — what can 
you ask? 

This takes us to a whole 
class of jokes often made about 
what does and does not count 
as AI in the first place: 

•	 “Is that AI or just a bunch of 
IF statements?”

•	 “Every time we figure out a 
piece of it [AI], it stops being 
magical; we say, ‘Oh, that’s 
just a computation’

•	 “AI is whatever hasn’t been 
done yet”

These jokes reflect two 
issues. The first is that it’s not 
totally apparent that human in-
telligence itself is actually more 
than ‘a bunch of IF statements’, 
of a few different kinds and at 
very large scale, at least at a 
conceptual level. 

But the second is that this 

While we have magic, we do not have 
HAL 9000 – we do not have a system 
that is close to human intelligence.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bM42Ht
http://bit.ly/2bM42Ht
http://bit.ly/2bM4t4D
http://bit.ly/2bM4t4D
http://bit.ly/2bM3CAK
http://bit.ly/2bM5N7g


55hacker bits

movement from magic to ba-
nality is a feature of all technol-
ogy and all computing, and it 
doesn’t mean that it’s not work-
ing but that it is. That is, tech-
nology is in a sense anything 
that hasn’t been working for 
very long. We don’t call electric-
ity technology, nor a washing 
machine a robot, and you could 
replace “is that AI or just compu-
tation?” with “is that technology 
or just engineering?” 

I think a foundational point 
here is Eric Raymond’s rule that 
a computer should ‘never ask 
the user for any information 
that it can auto detect, copy, or 
deduce’ — especially, here, de-
duce. One way to see the whole 
development of computing over 
the past 50 years is by remov-
ing questions that a computer 
needed to ask, and adding new 
questions that it could ask. 

Lots of those things didn’t 
necessarily look like questions 
as they’re presented to the user, 
but they were, and computers 
don’t ask them anymore:

•	 Where do you want to save 

this file?

•	 Do you want to defragment 
your hard disk?

•	 What interrupt should your 
sound card use?

•	 Do you want to quit this 
application?

•	 Which photos do you want to 
delete to save space?

•	 Which of these 10 search 
criteria do you want to fill in 
to run a web search?

•	 What’s the PIN for your 
phone?

•	 What kind of memory do you 
want to run this program in?

•	 What’s the right way to spell 
that word?

•	 What number is this page?

•	 Which of your friends’ up-
dates do you want to see? 

It strikes me sometimes, as 
a reader of very old science fic-
tion, that sci-fi did indeed most-
ly miss computing, but it talk-
ed a lot about ‘automatic’. If 
you look at that list, none of 

the items really look like ‘AI’ 
(though some might well use it 
in future), but a lot of them are 
‘automatic’. 

And that’s what any ‘AI’ 
short of HAL 9000 really is — 
the automatic pilot, the auto-
matic spell checker, the auto-
matic hardware configuration, 
the automatic image search or 
voice recogniser, the automatic 
restaurant-booker or cab-caller...

They’re all clerical work your 
computer doesn’t make you do 
anymore, because it gained the 
intelligence, artificially, to do 
them for you. 

This takes me to Apple. 
Apple has been making com-

puters that ask you fewer ques-
tions since 1984, and people 
have been complaining about 
that for just as long — one us-
er’s question is another user’s 
free choice (something you can 
see clearly in the contrasts be-
tween iOS and Android today). 

Steve Jobs once said that 
the interface for iDVD should 
just have one button: ‘BURN’. 
It launched Data Detectors in 
1997 — a framework that tried 

A foundational point here is Eric 
Raymond’s rule that a computer should 
‘never ask the user for any information 
that it can auto detect, copy, or deduce.’

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bM3Pnp
http://bit.ly/2bM5MjI
http://bit.ly/2bM5MjI
http://bit.ly/2bM3Nfv


56 hacker bits

to look at text and extract 
structured data in a helpful way 
— appointments, phone num-
bers or addresses. Today you’d 
use AI techniques to get there, 
so was that AI? Or a ‘bunch of IF 
statements’? Is there a canonical 
list of algorithms that count as 
AI? Does it matter? To a user 
who can tap on a number to dial 
instead of copy and pasting, is 
that a meaningful question?

This certainly seems to be 
one way that Apple is looking 
at AI on the device. In iOS 10, 
Apple is sprinkling AI through 
the interface. Sometimes this is 
an obviously new thing, such as 
image search, but more often 
it’s an old feature that works 

better or a small new feature to 
an existing application. Apple 
really does seem to see ‘AI’ as 
‘just computation’.

Meanwhile (and this is what 
gets a lot of attention) Apple has 
been very vocal that companies 
should not collect and analyse 
user data, and has been explicit 
that it is not doing so to provide 
any of these services. Exactly 
what that means varies a lot. 

Part of the point of neural 
networks is that training them 
is distinct from running them. 
You can train a neural network 
in the cloud with a vast image 
set at leisure, and then load the 
trained system onto a phone 
and run it on local data without 

anything leaving the device. 
This, for example, is how Google 
Translate works on mobile — 
the training is done in advance 
in the cloud but the analysis is 
local. 

Apple says it’s doing 
the same for Apple Pho-
tos — ‘it turns out we don’t 
need your photos of mountains 
to train a system to recognize 
mountains. We can get our own 
pictures of mountains’. It also 
has APIs to allow developers to 
run pre-trained neutral networks 
locally with access to the GPU. 
For other services it’s using 
‘differential privacy’, which uses 
encryption to obfuscate the data 
such that though it’s collected 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bM3OzR
http://bit.ly/2bM3OzR
http://bit.ly/2bM4rJL


57hacker bits

by Apple and analyses at scale, 
you can’t (in theory) work out 
which users it relates to. 

The sheer variety of places 
and ways that Apple is doing 
this, and the different tech-
niques, makes it pretty hard to 
make categorical statements 
on the lines of ‘Apple is miss-
ing this’. Apple has explicitly 
decided to do at least some of 
this with one hand tied behind 
its back, but it’s not clear how 
many services that really affects, 
or how much. 

Maybe you don’t need my 
photos of mountains, but how 
about training to recognize my 
son — is that being done on the 
device? Is the training data be-
ing updated? How much better 
is Google’s training data? How 
much would it benefit from that? 

Looking beyond just privacy, 
this field is moving so fast that 
it’s not easy to say where the 
strongest leads necessarily are, 
or to work out which things will 
be commodities and which will 
be strong points of difference. 

Though most of the primary 
computer science around these 

techniques is being published 
and open-sourced, the imple-
mentation is not trivial — these 
techniques are not necessarily 
commodities, yet. 

But there’s definitely a 
contrast with Apple’s approach 
to chip design. Since buying PA 
Semi in 2008 (if not earlier) Ap-
ple has approached the design 
of the SOCs in its devices as a 
fundamental core competence 
and competitive advantage, and 
it now designs chips for itself 
that are unquestionably mar-
ket-leading (which, incidentally, 
will be a major advantage when 
it launches a VR product). It’s 
not clear whether Apple looks at 
‘AI’ in the same way. 

There’s also, perhaps cyn-
ically, a ‘power of defaults’ 
issue here — if Google Photos 
is always 10-15% better than 
Apple Photos at object classi-
fication, will users notice be-
yond a certain level of shared 
accuracy? After all, Apple Maps 
has 3x more users than Google 
Maps on the iPhone and Google 
Maps is definitely better. And is 
any Google lead offset by, say, 

Apple’s Photo Stream or other 
features layered on top? Again, 
little of this is clear yet.

A common thread for both 
Apple and Google, and the apps 
on their platforms, is that even-
tually many ‘AI’ techniques will 
be APIs and development tools 
across everything, rather like, 
say, location. 

15 years ago geolocating 
a mobile phone was witchcraft 
and mobile operators had reve-
nue forecasts for ‘location-based 
services’. GPS and Wi-Fi-look-
up made LBS just another API 
call: ‘where are you?’ became 
another question that a comput-
er never has to ask you. 

But although location be-
came just an API — just a data-
base lookup — just another IF 
statement — the services creat-
ed with it sit on a spectrum. At 
one end are things like Four-
square — products that are only 
possible with real-time location 
and use it to do magic. Slightly 
behind are Uber or Lyft — it’s 
useful for Lyft to know where 
you are when you call a car, but 
not essential (it is essential for 

A common thread...is that eventually 
many ‘AI’ techniques will be APIs and 
development tools across everything...

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


58 hacker bits

the drivers’ app, of course). 
But then there’s something 

like Instagram, where location is 
a free nice-to-have — it’s useful 
to be able to geotag a photo 
automatically, but not essen-
tial and you might not want to 
anyway. (Conversely, image rec-
ognition is going to transform 
Instagram, though they’ll need 
a careful taxonomy of different 
types of coffee in the training 
data). And finally, there is, say, 
an airline app, that can ask you 
what city you’re in when you 
do a flight search, but really 
needn’t bother. 

In the same way, there will 
be products that are only pos-
sible because of machine learn-
ing, whether applied to images 
or speech or something else en-
tirely (no one looked at location 
and thought ‘this could change 
taxis”). 

There will be services that 
are enriched by it but could 
do without, and there will be 
things where it may not be that 
relevant at all (that anyone has 
realised yet). So, Apple offers 
photo recognition, but also a 

smarter keyboard and venue 
suggestions in the calendar app 
— it’s sprinkled ‘AI’ all over the 
place, much like location. And, 
like any computer science tool, 
there will be techniques that are 
commodities and techniques 
that aren’t, yet. 

All of this, so far, presumes 
that the impact of AI forms a 
sort of T-shaped model: there 
will be a vertical, search, in 
which AI techniques are utter-
ly transformative, and then a 
layer across everything where it 
changes things (much as loca-
tion did). 

But there’s another potential 
model in which AI becomes a 
new layer for the phone itself — 
that it changes the interaction 
model and relocates services 
from within app silos to a new 
runtime of some sort. Does it 
change the layer of aggregation 
on the phone — it makes apps 
better, but does it change what 
apps are? That’s potentially 
much more destabilizing to the 
model that Apple invented. 

Clearly in some cases the 
answer is ‘yes’. At the very 

least, structural changes in what 
search means change the com-
petitive landscape and destabi-
lize the mix between Google’s 
general purposes search and 
its vertical competitors: a Yelp 
search might become a Google 
question, or an answer offered 
before you’ve even asked. 

This is another case of re-
moving a question — instead of 
Google offering you ten search 
results that it thinks might an-
swer your question, it will try to 
give you the answer itself, and 
it will also try to give you that 
answer before you asked the 
question.   

More interestingly, an Uber 
or Lyft request, or an OpenTable 
booking, might also be re-aggre-
gated from an app to a sugges-
tion or answer within a voice UI 
or, say, Maps. 

An app with one button — 
that asks one simple question — 
could become a request pretty 
easily, whether in Google Assis-
tant, Siri, Apple or Googles Maps 
or a messaging app. In fact, one 
way to look at Apple’s opening 
of APIs into Maps, Siri, Messen-

It will try to give you the answer itself, 
and it will also try to give you that 
answer before you asked the question.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


59hacker bits

ger and so on is as a counter to 
Google. 

Where Google will find you 
a cinema, restaurant or hotel it-
self, Apple will lean on develop-
ers to solve the same use case. 
Google Allo suggests a restau-
rant where Apple’s iMessage 
gives you an OpenTable plugin. 

How broad is this, though? 
Yes, you could tell Siri or Google 
Assistant to ‘show me all the 
new Instagram posts’, but why 
is putting that inside to a feed of 
responses to all your questions 
a better UI? Why is Google’s ML 
interface a better place to see 
this than Chrome designed by 
Instagram? 

ML might (indeed, will) make 
the Facebook newsfeed better, 
but does it remove the differ-
ence between one-to-many and 
one-to-one communication chan-
nels? Why is the general-purpose 
rendering layer better than the 
special-purpose one? Does being 
subsumed into a general pur-
pose ML layer change this? 

One could propose a rebun-
dling because it allows an easier 
interface — your home screen 

could show you documents, 
emails and meetings of the day 
instead of you having to go into 
each app to deal with them. 

Perhaps ‘which app do you 
want to open next?’ is a ques-
tion that can be moved — the 
car is ordered, the meeting 
accepted, the expense report 
approved. This is already what 
Facebook does for a whole sec-
tion of interaction, and before 
ML — what shared posts to see, 
who to talk to, what news to 
read. But it’s not the only thing 
on the phone. And, again, we 
don’t have HAL 9000. 

We don’t actually have a 
system that knows you, and 
everything you want, and ev-
erything inside all of your apps, 
and we’re not anywhere close to 
that. So the idea that Google can 
subsume everything you do on 
your phone into a single unified 
AI-based layer that sits on top 
looks rather like what one might 
call a ‘Dr. Evil plan’ — it’s too 
clever by half and needs tech-
nology (the killer laser satellite!) 
that doesn’t actually exist.   

It seems to me that there are 

two things that make it hard to 
talk about the AI explosion. The 
first is that ‘AI’ is an impossibly 
broad term that implies we have 
a new magic hammer that turns 
every problem into a nail. 

We don’t — we have a bunch 
of new tools that solve some, 
but not all, problems, and the 
promise of extracting new in-
sight from all sorts of data pools 
will not always be met. It might 
be the wrong data, or the wrong 
insight. 

The second is that this field 
is growing and changing very 
fast, and things that weren’t 
working now are, and new 
things are being discussed all 
the time. So we have excitement 
and bullshit, skepticism and 
vision, and a bunch of amazing 
companies being created. Some 
of this stuff will be in everything 
and you won’t even notice it, 
and some of it will be the next 
Amazon. 

We have excitement and bullshit, 
skepticism and vision, and a bunch of 
amazing companies being created.

Reprinted with permission of the original author. First appeared at ben-evans.com.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2bM4tSb


60 hacker bits

Interesting

By CHRISTINA WODTKE

The dreaded weekly status 
email

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


61hacker bits

I remember the first time I had 
to write one of these puppies.

I had just been promot-
ed to manager at Yahoo back 
in 2000, and was running a 
small team. I was told to “write 
a status email covering what 
your team has done that week, 
due friday.” Well, you can eas-
ily imagine how I felt. I had to 
prove my team was getting 
things done! Not only to justify 
our existence, but to prove we 
needed more people. Because, 
you know, more people ami-
right?* 

So I did what everyone does: 
I listed every single thing my 
reports did, and made a truly 
unreadable report. Then I start-
ed managing managers, and had 
them send me the same, which 
I collated into an even longer 
and more horrible report. This 
I sent to my design manager, 
Irene Au and my GM, Jeff Weiner 

(who sensibly requested I put a 
summary at the top. Go Jeff!)

And so it went, as I moved 
from job to job, writing long 
tedious reports that at best 
got skimmed. At one job, I 
stopped authoring them. I had 
my managers send them to my 
project manager, who collated 
them, sent it to me for review, 
and after checking for anything 
embarrassing, I forwarded it on 
to my boss. One week I forgot to 
read it, and didn’t hear anything 
about it. It was a waste of every-
body’s time.

Then I got to Zynga in 2010. 
Now say what you want about 
Zynga (and much of it was true) 
but they were really good at 
some critical things that make 
an organization run well. One 
was the status report. All reports 
were sent to the entire manage-
ment team, and I enjoyed read-
ing them. Yes, you heard me 

right: I enjoyed reading them, 
even if when there were 20 of 
them.

Why? Because they had im-
portant information laid out in a 
digestible format. I used them to 
understand what I needed to do, 
and learn from what was going 
right. Please recall that Zynga, in 
the early days, grew faster than 
any company I’ve seen. I suspect 
the efficiency of communication 
was a big part of that. When I 
left Zynga, I started to consult. 
I adapted the status mail to suit 
the various companies I worked 
with, throwing in some tricks 
from Agile. Now I have a simple, 
solid format that works across 
any org, big or small.

1.	 Lead with your 
team’s OKRs, and how 
much confidence you 
have that you are going 
to hit them this quarter. 

I did what everyone does: 
I listed every single thing my reports did, 
and made a truly unreadable report.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2blaVS9


62 hacker bits

If you don’t use OKRs, use 
any goal you set quarterly. 
If you don’t set goals, you 
have more problems than 
your status report.  Your 
confidence is your guess 
of how likely you feel you 
will meet your key results, 
on a scale from 1 to 10. 1 
is never going to happen 
and 10 is in the bag. Mark 
your confidence red when 
it falls below 5, green as 
it heads toward ten. Color 
makes it scannable, mak-
ing your boss and team-
mates happy.** Listing 
confidence helps you and 
your teammates track 
progress, and correct early 
if needed.

2.	 List last week’s priori-
tized tasks, and if they 
were achieved. If they 
were not, a few words to 
explain why. The goal here 

is to learn what keeps the 
organization from accom-
plishing what it needs to 
accomplish. See below for 
format.

3.	 Next, list next week’s 
priorities. Only list three 
P1’s, and make them 
meaty accomplishments 
that encompass multiple 
steps. “Finalize spec for 
project xeno” is a good P1. 
It probably encompasses 
writing, reviews with mul-
tiple groups and sign off. 
It also gives a heads up to 
other teams and your boss 
that you’ll be coming by. 
“Talk to legal” is a bad P1. 
This priority takes about 
half hour, has no clear 
outcome, feels like a sub-
task and not only that, you 
didn’t even tell us what 
you were talking about! 
You can add a couple P2’s, 

but they should also be 
meaty, worthy of being 
next week’s P2’s. You want 
fewer, bigger items.

4.	 List any risks or block-
ers. Just as in an Agile 
stand-up, note anything 
you could use help on that 
you can’t solve yourself. 
Do NOT play the blame 
game. Your manager does 
not want to play mom, 
listening to you and a fel-
low executive say “it’s his 
fault.” Also, list anything 
you know of that could 
keep you from accomplish-
ing what you set out to 
do— a business partner 
playing hard-to-schedule, 
or a tricky bit of technolo-
gy that might take longer 
than planned to sort out. 
Bosses do not like to be 
surprised. Don’t surprise 
them.

You list OKR’s to remind everyone 
(and sometimes yourself) 
WHY you are doing the things you did. 

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016


63hacker bits

5.	 Notes. Finally, if you have 
anything that doesn’t fit in 
these categories, but you 
absolutely want to include, 
add a note. “Hired that 
fantastic guy from Amazon 
that Jim sent over. Thanks, 
Jim!” is a decent note, as 
is “Reminder: team out 
Friday for offsite to Giant’s 
game.” Make them short, 
timely and useful. Do not 
use notes for excuses, 
therapy or novel writing 
practice.

This format also fixes anoth-
er key challenge large organiza-
tions face: coordination.

To write a status report the 
old way, I had to have team sta-
tus in by Thursday night in order 
to collate, fact check and edit. 
But with this system, I know 
what my priorities are, and I use 
my reports’ status only as a way 

to make sure their priorities are 
mine. I send out my report Fri-
day, as I receive my report’s. We 
stay committed to each other, 
honest and focused.

Work should not be a chore 
list, but a collective push for-
ward toward shared goals. The 
status email reminds everyone 
of this fact, and helps us avoid 
slipping into checkbox thinking. 
This system is so effective in 
helping me get things done, I’ve 
even adapted it for my personal 
life. 

Coordinating organizational 
efforts is critical to a company’s 
ability to compete and innovate. 
Giving up on the status email is 
a strategic error. It can be a task 
that wastes key resources, or it 
can be a way that teams connect 
and support each other. Change 
your status email today, and 
transform your teams. 

Footnotes
*Later, I learned to say “the problem 
isn’t that we don’t have too few people, 
the problem is that we have too many 
priorities.” But that’s another topic for 
another day.

**Do not use more colors than red, 
green and black in your reports. Red 
and green are cultural symbols for go 
and stop, bad and good. Black is easy 
to read for body text. If you need to 
add a legend to your status reports, 
you’re doing it wrong. And while we’re 
on the topic, Georgia is a lovely font for 
anything you want to do. Just sayin’.

Finally I advise a company 
called Workboard that automates status! 
Makes life easier…

Change your status email today, 
and transform your teams.

Reprinted with permission of the original author. First appeared at eleganthack.com.

https://hackerbits.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2blb4Fe
http://bit.ly/2blb4Fe
http://bit.ly/2blb4Fe
http://bit.ly/2blabN4
http://bit.ly/2bl9Pps


For the ultimate survival food, look no further than hardtack. 
Also known as pilot bread, sea biscuits, molar breakers and a 
slew of unsavory names, hardtack is undoubtedly one of the 

greatest survival foods ever created. 
A mainstay of expeditions, long ship journeys and earthquake 

emergency kits, these plain hard crackers were widely used during 
the American Civil War because they were cheap, filling and as 
non-perishable as it gets. Made from flour, salt and water, hard-
tack is admittedly dry and flavorless, but its blandness means that 
it goes superbly with everything from peanut butter and cheese to 
soups and whiskey. 

* FOOD BIT is where we, enthusiasts of all edibles, sneak in a fun fact about food.

Hardtack

food bit *

HACKER BITS is the monthly magazine that gives you the hottest technology stories crowdsourced by the readers of Hacker News. We select 
from the top voted stories and publish them in an easy-to-read magazine format.

Get HACKER BITS delivered to your inbox every month! For more, visit hackerbits.com.

By DryPot - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=14929630

http://news.ycombinator.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
https://hackerbits.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=sep2016
http://bit.ly/2cd710e

	_GoBack
	_GoBack
	_GoBack
	_msoanchor_2
	_GoBack
	_GoBack

