
hacker bits
July 2016

Greetings from Redmond!

Lately, we’ve been thinking a lot about free will. Do
we have it? Do we want it? Is technology freeing? Or
does it simply give you a menu to choose from?

In this issue’s most highly upvoted story, Google’s
Design Ethicist Tristan Harris shows us the sneaky
ways tech companies manipulate us and the true cost
of social media.

Speaking of being social, we love reading mail from
you, our readers, and more than a few of you have
told us how busy your lives are, and what a challenge
it is staying current on technology.

We totally get it (we have a toddler who decided to
stop sleeping) and that’s why we are simplifying the
magazine and focusing only on the essential. Learn
more, read less and stay current.

There are no ads, no redundant info and absolutely
no BS. Our hope is that you’ll learn something from
every article in Hacker Bits, or at the very least, get a
few chuckles out of it.

So enjoy another issue by our top-notch contributors
and feel free to tell us what you think of the
magazine!

Peace and plenty of sleep!

— Maureen and Ray
us@hackerbits.com

P.S. If y’all know of any ways to put a toddler to
sleep, let us know too! :)

new bits

mailto:us@hackerbits.com

3hacker bits

content bits

06 Mastering programming

How to worry less about being a
bad programmer

18 What is the difference between
deep learning and usual machine
learning?

How technology hijacks people’s
minds

44 How to win the coding interview

48 Web Storage: the lesser evil for
session tokens

50 How to write a git commit
message

42 Programmers are not different,
they need simple UIs

July 2016

22 Email isn’t the thing you’re bad at

34 My time with Rails is up

08

30

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

4 hacker bits

Sebastian Raschka
Sebastian is a Data
Scientist developing
novel techniques in the
computational biology
field at Michigan State
University and is the au-
thor of the bestselling
book Python Machine
Learning.

Tristan Harris
Tristan was Product
Philosopher at Google
until 2016 where he
studied how technol-
ogy affects a billion
people’s attention,
wellbeing and behavior.
Find more resources on
Time Well Spent.

Glyph Lefkowitz
Glyph works for Rack-
space on open source
research. He founded
the Twisted project and
has written Python for
everything from online
games to enterprise
software, from embed-
ded systems to main-
frames.

Piotr Solnica
Piotr is a software
developer from Poland
with over a decade of
experience. An active
Ruby developer since
2007 and Open Source
contributor since 2009,
he's currently working
hard on rom-rb and
dry-rb.

Peter Welch
Peter is a high-func-
tioning alcoholic out
of backwater Brooklyn.
He pokes at keyboards.
Sometimes people give
him money for it. He is
also the author of And
Then I Thought I Was a
Fish and Observations
of a Straight White Male
with No Interesting
Fetishes.

Kent Beck
Kent is an software
engineer, author,
coach and creator of
Extreme Programming.
He was one of the 17
signatories of the Agile
Manifesto and a lead-
ing proponent of TDD.
He pioneered design
patterns and his cur-
rent academic project
is a study of software
design.

Bill Sourour
Bill is the founder of
DevMastery.com. A
20-year veteran pro-
grammer, architect,
consultant, and teach-
er, he helps individual
developers and bil-
lion-dollar organiza-
tions become more
successful every day.

Salvatore Sanfilippo
Salvatore is an Italian
self taught software de-
veloper. He is the main
author of a few open
source projects includ-
ing Redis and Disque.
He blogs at antirez.com
and tweets @antirez.

contributor bits

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Rk1kU
http://amzn.to/28UXVyo
http://amzn.to/28UXVyo
http://amzn.to/28UXVyo
http://amzn.to/28UdkU0
http://amzn.to/28UdkU0
http://amzn.to/28UdkU0
http://amzn.to/28UdkU0
http://bit.ly/291RSub
http://bit.ly/28XCVdM
http://bit.ly/28RjYWf

5hacker bits

Ray Li
Curator

Ray is a software en-
gineer and data en-
thusiast who has been
blogging at rayli.net
for over a decade. He
loves to learn, teach
and grow. You’ll usu-
ally find him wrangling
data, programming and
lifehacking.

Maureen Ker
Editor

Maureen is an editor,
writer, enthusiastic
cook and prolific collec-
tor of useless kitchen
gadgets. She is the
author of 3 books and
100+ articles. Her work
has appeared in the
New York Daily News,
and various adult and
children’s publications.

James Kettle
James is head of re-
search at PortSwigger
Web Security, where
he designs and refines
vulnerability detection
techniques for Burp
Suite's scanner.

Chris Beams
Chris is an open source
software developer and
part of the team behind
the Gradle build sys-
tem.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28RGoeK
http://bit.ly/28XDfJK
http://bit.ly/28XDfJK

6 hacker bits

Programming

By KENT BECK

Mastering programming

From years of watching
master programmers, I have
observed certain common

patterns in their workflows.
From years of coaching skilled
journeyman programmers, I
have observed the absence of
those patterns. I have seen what
a difference introducing the pat-
terns can make.

Here are ways effective pro-

grammers get the most out of
their precious 3e9 seconds on
the planet.

The theme here is scaling
your brain. The journeyman
learns to solve bigger prob-
lems by solving more problems
at once. The master learns to
solve even bigger problems than
that by solving fewer problems
at once. Part of the wisdom is

subdividing so that integrating
the separate solutions will be a
smaller problem than just solv-
ing them together.

Time
• Slicing. Take a big project,

cut it into thin slices, and
rearrange the slices to suit
your context. I can always

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

7hacker bits

exactly what will happen.
• Concrete hypotheses. When

the program is misbehaving,
articulate exactly what you
think is wrong before mak-
ing a change. If you have two
or more hypotheses, find a
differential diagnosis.

• Remove extraneous detail.
When reporting a bug, find
the shortest repro steps.
When isolating a bug, find
the shortest test case. When
using a new API, start from
the most basic example. “All
that stuff can’t possibly mat-
ter,” is an expensive assump-
tion when it’s wrong.

E.g. see a bug on mobile,
reproduce it with curl

• Multiple scales. Move be-
tween scales freely. Maybe
this is a design problem, not
a testing problem. Maybe it
is a people problem, not a
technology problem [cheat-
ing, this is always true].

Transcend logic
• Symmetry. Things that are

almost the same can be
divided into parts that are
identical and parts that are
clearly different.

• Aesthetics. Beauty is a pow-
erful gradient to climb. It is
also a liberating gradient to
flout (e.g. inlining a bunch
of functions into one giant
mess).

• Rhythm. Waiting until the
right moment preserves en-
ergy and avoids clutter. Act
with intensity when the time
comes to act.

• Tradeoffs. All decisions are
subject to tradeoffs. It’s

more important to know
what the decision depends
on than it is to know which
answer to pick today (or
which answer you picked
yesterday).

Risk
• Fun list. When tangential

ideas come, note them and
get back to work quickly.
Revisit this list when you’ve
reached a stopping spot.

• Feed ideas. Ideas are like
frightened little birds. If you
scare them away they will
stop coming around. When
you have an idea, feed it a
little. Invalidate it as quickly
as you can, but from data,
not from a lack of self-es-
teem.

• 80/15/5. Spend 80% of your
time on low-risk/reason-
able-payoff work. Spend 15%
of your time on related high-
risk/high-payoff work. Spend
5% of your time on things
that tickle you, regardless
of payoff. Teach the next
generation to do your 80%
job. By the time someone is
ready to take over, one of
your 15% experiments (or,
less frequently, one of your
5% experiments) will have
paid off and will become
your new 80%. Repeat.

Conclusion
The flow in this outline seems
to be from reducing risks by
managing time and increasing
learning to mindfully taking
risks by using your whole brain
and quickly triaging ideas.

slice projects finer and I can
always find new permuta-
tions of the slices that meet
different needs.

• One thing at a time. We’re so
focused on efficiency that we
reduce the number of feed-
back cycles in an attempt to
reduce overhead. This leads
to difficult debugging situa-
tions whose expected cost is
greater than the cycle over-
head we avoided.

• Make it run, make it right,
make it fast. (Example of
One Thing at a Time, Slicing,
and Easy Changes)

• Easy changes. When faced
with a hard change, first
make it easy (warning: this
may be hard), then make the
easy change (e.g. slicing,
one thing at a time, concen-
tration, isolation). Example
of slicing.

• Concentration. If you need
to change several elements,
first rearrange the code
so the change only needs
to happen in one element.
Isolation. If you only need to
change a part of an element,
extract that part so the
whole sub element changes.

• Baseline measurement. Start
projects by measuring the
current state of the world.
This goes against our en-
gineering instincts to start
fixing things, but when you
measure the baseline you
will actually know whether
you are fixing things.

Learning
• Call your shot. Before you

run code, predict out loud

Reprinted with permission of the original author. First appeared at www.prod.facebook.com/kentlbeck.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/1OxXmyg
http://bit.ly/1Uj5eWp

8 hacker bits

How technology hijacks
people’s minds —

from a magician and
Google’s design ethicist

By TRISTAN HARRIS

Interesting

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

I’m an expert on how technol-
ogy hijacks our psychological
vulnerabilities. That’s why I

spent the last three years as a
Design Ethicist at Google car-
ing about how to design things
in a way that defends a billion
people’s minds from getting
hijacked.

When using technology, we
often focus optimistically on all
the things it does for us. But I
want to show you where it might
do the opposite.

Where does technology ex-
ploit our minds’ weaknesses?

I learned to think this way
when I was a magician. Magi-
cians start by looking for blind
spots, edges, vulnerabilities and
limits of people’s perception, so
they can influence what people
do without them even realizing
it. Once you know how to push
people’s buttons, you can play
them like a piano.

And this is exactly what
product designers do to your
mind. They play your psycholog-
ical vulnerabilities (consciously
and unconsciously) against you
in the race to grab your atten-
tion.

I want to show you how they
do it.

Hijack #1: If you
control the menu,
you control the
choices
Western culture is built around
ideals of individual choice and
freedom. Millions of us fiercely
defend our right to make “free”
choices, while we ignore how
those choices are manipulated
upstream by menus we didn’t
choose in the first place.

This is exactly what magi-
cians do. They give people the

illusion of free choice while ar-
chitecting the menu so that they
win, no matter what you choose.
I can’t emphasize enough how
deep this insight is.

When people are given a
menu of choices, they rarely ask:

• “what’s not on the menu?”

• “why am I being given these
options and not others?”

• “do I know the menu provid-
er’s goals?”

• “is this menu empowering
for my original need, or
are the choices actually a
distraction?” (e.g. an over-
whelmingly array of tooth-
pastes)

For example, imagine you’re
out with friends on a Tuesday
night and want to keep the con-
versation going. You open Yelp
to find nearby recommendations
and see a list of bars. The group
turns into a huddle of faces
staring down at their phones
comparing bars. They scrutinize
the photos of each, comparing
cocktail drinks. Is this menu still
relevant to the original desire of
the group?

It’s not that bars aren’t
a good choice, it’s that Yelp
substituted the group’s original
question (“where can we go to
keep talking?”) with a different
question (“what’s a bar with
good photos of cocktails?”) all
by shaping the menu.

Moreover, the group falls
for the illusion that Yelp’s menu
represents a complete set of
choices for where to go. While
looking down at their phones,
they don’t see the park across
the street with a band playing
live music. They miss the pop-up
gallery on the other side of the
street serving crepes and coffee.
Neither of those show up on
Yelp’s menu. How empowering is this menu

of choices for the need, “I ran out of
toothpaste?”

10 hacker bits

The more choices technolo-
gy gives us in nearly every do-
main of our lives (information,
events, places to go, friends,
dating, jobs) — the more we
assume that our phone is always
the most empowering and useful
menu to pick from. Is it?

The “most empowering”
menu is different than the
menu that has the most
choices. But when we blindly

 Yelp subtly reframes the group’s need of “where can we go to keep talking?”
in terms of photos of cocktails served.

surrender to the menus we’re
given, it’s easy to lose track of
the difference:

• “Who’s free tonight to hang
out?” becomes a menu of the
most recent people who tex-
ted us (who we could ping).

• “What’s happening in the
world?” becomes a menu of

news feed stories.

• “Who’s single to go on a
date?” becomes a menu of
faces to swipe on Tinder
(instead of local events with
friends, or urban adventures
nearby).

• “I have to respond to this
email.” becomes a menu of
keys to type a response (in-
stead of empowering ways to
communicate with a person).

When we wake up in the
morning and turn our phone
over to see a list of notifica-
tions — it frames the experience
of “waking up in the morning”
around a menu of “all the things
I’ve missed since yesterday.”
(For more examples, see Joe
Edelman’s Empowering Design
talk)

 All user interfaces are menus. What if your email client

gave you empowering choices of ways to respond, instead of “what

message do you want to type back?” (Design by Tristan Harris)

 A list of notifications when

we wake up in the morning — how
empowering is this menu of choices
when we wake up? Does it reflect what
we care about? (from Joe Edelman’s
Empowering Design Talk)

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28RQzfv
http://bit.ly/28RQzfv
http://bit.ly/28RQzfv
http://bit.ly/28RQzfv
http://bit.ly/28RQzfv

11hacker bits

By shaping the menus we
pick from, technology hijacks
the way we perceive our choic-
es and replaces them with new
ones. But the closer we pay
attention to the options we’re
given, the more we’ll notice
when they don’t actually align
with our true needs.

Hijack #2: Put a slot
machine in a billion
pockets
If you’re an app, how do you
keep people hooked? Turn your-
self into a slot machine.

The average person checks
their phone 150 times a day.
Why do we do this? Are we mak-
ing 150 conscious choices?

 How often do you check your

email per day?

One major reason why is the
#1 psychological ingredient in
slot machines: intermittent vari-
able rewards.

To maximize addictiveness,
all tech designers need to do is
link a user’s action (like pulling
a lever) with a variable reward.
You pull a lever and immediately
receive either an enticing reward
(a match, a prize!) or nothing.
Addictiveness is maximized
when the rate of reward is most
variable.

Does this effect really work on
people? Yes. Slot machines make
more money in the United States
than baseball, movies, and
theme parks combined. Rela-
tive to other kinds of gambling,
people get “problematically in-
volved” with slot machines 3–4x
faster, according to NYU profes-
sor Natasha Dow Schull, author
of Addiction by Design.

But here’s the unfortunate
truth — several billion people
have a slot machine their pock-
et:

• When we pull our phone out
of our pocket, we’re playing
a slot machine to see what
notifications we got.

• When we pull to refresh our
email, we’re playing a slot
machine to see what new
email we got.

• When we swipe down our
finger to scroll the Instagram
feed, we’re playing a slot
machine to see what photo
comes next.

• When we swipe faces left/
right on dating apps like
Tinder, we’re playing a slot
machine to see if we got a
match.

• When we tap the # of red
notifications, we’re playing
a slot machine to what’s
underneath.

Apps and websites sprinkle
intermittent variable rewards all
over their products because it’s
good for business.

But in other cases, slot ma-

chines emerge by accident. For
example, there is no malicious
corporation behind all of email
that consciously choose to make
it a slot machine. No one profits
when millions check their email
and nothing’s there. Neither did
Apple and Google’s designers
want phones to work like slot
machines. It emerged by acci-
dent.

But now companies like Ap-
ple and Google have a responsi-
bility to reduce these effects by
converting intermittent variable
rewards into less addictive,
more predictable ones with
better design. For example, they
could empower people to set
predictable times during the day
or week for when they want to
check “slot machine” apps, and
correspondingly adjust when
new messages are delivered to
align with those times.

Hijack #3: Fear of
missing something
important (FOMSI)
Another way apps and websites
hijack people’s minds is by
inducing a “1% chance you could
be missing something import-
ant.”

If I convince you that I’m a
channel for important informa-
tion, messages, friendships, or
potential sexual opportunities
— it will be hard for you to turn
me off, unsubscribe, or remove
your account — because (aha, I
win) you might miss something
important:

• This keeps us subscribed to
newsletters even after they
haven’t delivered recent ben-
efits (“what if I miss a future
announcement?”)

• This keeps us “friended” to
people with whom we hav-

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Vzp5c
http://bit.ly/28Vzp5c
http://cbsn.ws/28VNf5N
http://bit.ly/28VNopL
http://bit.ly/28VNopL

12 hacker bits

en’t spoke in ages (“what if
I miss something important
from them?”)

• This keeps us swiping faces
on dating apps, even when
we haven’t even met up with
anyone in a while (“what if I
miss that one hot match who
likes me?”)

• This keeps us using social
media (“what if I miss that
important news story or fall
behind on what my friends
are talking about?”)

But if we zoom into that fear,
we’ll discover that it’s unbound-
ed: we’ll always miss something
important at any point when we
stop using something.

• There are magic moments
on Facebook we’ll miss by
not using it for the 6th hour
(e.g. an old friend who’s vis-
iting town right now).

• There are magic moments
we’ll miss on Tinder (e.g.
our dream romantic partner)
by not swiping our 700th
match.

• There are emergency phone
calls we’ll miss if we’re not
connected 24/7.

But living moment to mo-
ment with the fear of missing
something isn’t how we’re built
to live.

And it’s amazing how quick-
ly, once we let go of that fear,
we wake up from the illusion.
When we unplug for more than
a day, unsubscribe from those
notifications, or go to Camp
Grounded — the concerns we
thought we’d have don’t actually
happen.

We don’t miss what we don’t
see.

The thought, “what if I miss

something important?” is gen-
erated in advance of unplug-
ging, unsubscribing, or turning
off — not after. Imagine if tech
companies recognized that, and
helped us proactively tune our
relationships with friends and
businesses in terms of what we
define as “time well spent” for
our lives, instead of in terms of
what we might miss.

Hijack #4: Social
approval
We’re all vulnerable to social
approval. The need to belong,
to be approved of or appreciat-
ed by our peers is among the
highest human motivations. But
now our social approval is in the
hands of tech companies.

When I get tagged by my
friend Marc, I imagine him mak-
ing a conscious choice to tag me.
But I don’t see how a company
like Facebook orchestrated his
doing that in the first place.

Facebook, Instagram or
SnapChat can manipulate how
often people get tagged in pho-
tos by automatically suggesting
all the faces people should tag
(e.g. by showing a box with
a 1-click confirmation, “Tag
Tristan in this photo?”).

So when Marc tags me, he’s
actually responding to Face-

 Easily one of the most persuasive things a human being

can receive.

book’s suggestion, not making
an independent choice. But
through design choices like this,
Facebook controls the multiplier
for how often millions of people
experience their social approval
on the line.

The same happens when we
change our main profile pho-
to — Facebook knows that’s a
moment when we’re vulnerable
to social approval: “what do my
friends think of my new pic?”
Facebook can rank this higher
in the news feed, so it sticks
around for longer and more
friends will like or comment on
it. Each time they like or com-

 Facebook uses automatic

suggestions like this to get people

to tag more people, creating more

social externalities and interruptions.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28ZOqmS
http://bit.ly/28ZOqmS
http://bit.ly/28Rk1kU

13hacker bits

ment on it, we’ll get pulled right
back.

Everyone innately responds
to social approval, but some
demographics (teenagers) are
more vulnerable to it than oth-
ers. That’s why it’s so import-
ant to recognize how powerful
designers are when they exploit
this vulnerability.

Hijack #5: Social
reciprocity (tit-for-tat)
• You do me a favor — I owe

you one next time.

• You say, “thank you”— I have
to say “you’re welcome.”

• You send me an email — it’s
rude not to get back to you.

• You follow me — it’s rude
not to follow you back. (es-
pecially for teenagers)

We are vulnerable to needing
to reciprocate others’ gestures.
But as with social approval, tech
companies now manipulate how
often we experience it.

In some cases, it’s by acci-
dent. Email, texting and messag-
ing apps are social reciprocity
factories. But in other cases,
companies exploit this vulnera-
bility on purpose.

LinkedIn is the most obvi-
ous offender. LinkedIn wants
as many people creating social
obligations for each other as
possible, because each time
they reciprocate (by accepting
a connection, responding to a

message, or endorsing some-
one back for a skill) they have
to come back to linkedin.com
where they can get people to
spend more time.

Like Facebook, LinkedIn ex-
ploits an asymmetry in percep-
tion. When you receive an invita-
tion from someone to connect,
you imagine that person making
a conscious choice to invite you,
when in reality, they likely un-
consciously responded to Linke-
dIn’s list of suggested contacts.
In other words, LinkedIn turns
your unconscious impulses (to
“add” a person) into new social
obligations that millions of peo-
ple feel obligated to repay. All
while they profit from the time
people spend doing it.

Imagine millions of people
getting interrupted like this
throughout their day, running
around like chickens with their
heads cut off, reciprocating each
other — all designed by compa-
nies who profit from it.

Welcome to social media.
Imagine if technology com-

panies had a responsibility to
minimize social reciprocity. Or
if there was an independent or-

 After accepting an

endorsement, LinkedIn takes

advantage of your bias to reciprocate

by offering four additional people for

you to endorse in return.

ganization that represented the
public’s interests — an industry
consortium or an FDA for tech —
that monitored when technology
companies abused these biases?

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

14 hacker bits

Hijack #6: Bottomless
bowls, infinite feeds,
and autoplay

Another way to hijack peo-
ple is to keep them consuming
things, even when they aren’t
hungry anymore.

How? Easy. Take an expe-
rience that was bounded and
finite, and turn it into a bottom-
less flow that keeps going.

Cornell professor Brian
Wansink demonstrated this in
his study showing you can trick
people into keep eating soup by
giving them a bottomless bowl
that automatically refills as they
eat. With bottomless bowls, peo-
ple eat 73% more calories than
those with normal bowls and un-
derestimate how many calories
they ate by 140 calories.

Tech companies exploit the
same principle. News feeds are
purposely designed to auto-refill
with reasons to keep you scroll-
ing, and purposely eliminate any
reason for you to pause, recon-
sider or leave.

It’s also why video and social
media sites like Netflix, You-
Tube or Facebook autoplay the
next video after a countdown in-
stead of waiting for you to make
a conscious choice (in case you
won’t). A huge portion of traffic
on these websites is driven by
autoplaying the next thing.

Tech companies often claim

 YouTube autoplays the next

video after a countdown

that “we’re just making it easier
for users to see the video they
want to watch” when they are
actually serving their business
interests. And you can’t blame
them, because increasing “time
spent” is the currency they com-
pete for.

Instead, imagine if technol-
ogy companies empowered you
to consciously bound your expe-
rience to align with what would
be “time well spent” for you. Not
just bounding the quantity of
time you spend, but the quali-
ties of what would be “time well
spent.”

Hijack #7: Instant
interruption vs.
“respectful” delivery
Companies know that messages
that interrupt people immedi-
ately are more persuasive at
getting people to respond than
messages delivered asynchro-
nously (like email or any de-
ferred inbox).

Given the choice, Face-
book Messenger (or WhatsApp,
WeChat or SnapChat for that
matter) would prefer to design
their messaging system to in-
terrupt recipients immediately

(and show a chat box) instead
of helping users respect each
other’s attention.

In other words, interruption
is good for business.

It’s also in their interest to
heighten the feeling of urgency
and social reciprocity. For exam-
ple, Facebook automatically tells
the sender when you “saw” their
message, instead of letting you

 Netflix also autoplays

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Sj1hD
http://bit.ly/28Sj1hD
http://bit.ly/28Sj1hD
http://bit.ly/28Rk1kU

15hacker bits

avoid disclosing whether you
read it (“now that you know I’ve
seen the message, I feel even
more obligated to respond.”)

By contrast, Apple more
respectfully lets users toggle
“Read Receipts” on or off.

The problem is, maximiz-
ing interruptions in the name
of business creates a tragedy
of the commons, ruining glob-
al attention spans and causing
billions of unnecessary interrup-
tions each day. This is a huge
problem we need to fix with
shared design standards (po-
tentially, as part of Time Well
Spent).

Hijack #8: Bundling
your reasons with
their reasons
Another way apps hijack you is
by taking your reasons for visit-
ing the app (to perform a task)
and make them inseparable
from the app’s business reasons
(maximizing how much we con-
sume once we’re there).

For example, in the physical
world of grocery stores, the #1
and #2 most popular reasons
to visit are pharmacy refills and
buying milk. But grocery stores
want to maximize how much
people buy, so they put the
pharmacy and the milk at the
back of the store.

In other words, they make
the thing customers want (milk,
pharmacy) inseparable from
what the business wants. If
stores were truly organized to
support people, they would put
the most popular items in the
front.

Tech companies design their
websites the same way. For
example, when you you want to
look up a Facebook event hap-
pening tonight (your reason),

the Facebook app doesn’t allow
you to access it without first
landing on the news feed (their
reasons), and that’s on purpose.
Facebook wants to convert every
reason you have for using Face-
book, into their reason which is
to maximize the time you spend
consuming things.

Instead, imagine if …

• Facebook gave a separate
way to look up or host Face-
book Events, without being
forced to use their news
feed.

• Facebook gave you a sepa-
rate way to use Facebook
Connect as a passport for
creating accounts on new
apps and websites, without
being forced to use Face-
book’s entire app, news feed
and notifications.

• Email gave you a separate
way to look up and reply to
a specific message, without
being forced to see all new
unread messages.

In an ideal world, there is
always a direct way to get what
you want separately from what
businesses want.

Imagine a digital “bill of
rights” outlining design stan-
dards that forced the products
used by billions of people to
support empowering ways for
them to navigate toward their
goals.

Hijack #9:
Inconvenient choices
We’re told that it’s enough for
businesses to “make choices
available.”

• “If you don’t like it, you can
always use a different prod-
uct.”

• “If you don’t like it, you can
always unsubscribe.”

• “If you’re addicted to our
app, you can always uninstall
it from your phone.”

Businesses naturally want to
make the choices they want you
to make easier, and the choices
they don’t want you to make
harder. Magicians do the same
thing. You make it easier for a
spectator to pick the thing you
want them to pick, and harder to
pick the thing you don’t.

For example, NYTimes.com
lets you “make a free choice” to
cancel your digital subscription.

 NYTimes claims it’s giving a free choice to

cancel your account

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Rk1kU
http://bit.ly/28Rk1kU
http://econ.st/293Y9o1
http://econ.st/293Y9o1
http://econ.st/293Y9o1

16 hacker bits

But instead of just doing it when
you hit “Cancel Subscription,”
they send you an email with
information on how to cancel
your account by calling a phone
number that’s only open at cer-
tain times.

Instead of viewing the world
in terms of availability of choic-
es, we should view the world
in terms of friction required to
enact choices. Imagine a world
where choices were labeled with
how difficult they were to fulfill
(like coefficients of friction) and
there was an independent entity
— an industry consortium or
non-profit — that labeled these
difficulties and set standards for
how easy navigation should be.

Hijack #10:
Forecasting errors,
“foot in the door”
strategies
Lastly, apps can exploit people’s
inability to forecast the conse-
quences of a click.

People don’t intuitively
forecast the true cost of a click
when it’s presented to them.
Sales people use “foot in the
door” techniques by asking for
a small innocuous request to
begin with (“just one click to see
which tweet got retweeted”) and

 Facebook promises an easy choice to “See Photo.”

Would we still click if it gave the true price tag?

escalate from there (“why don’t
you stay awhile?”). Virtually all
engagement websites use this
trick.

Imagine if web browsers
and smartphones, the gateways
through which people make
these choices, were truly watch-
ing out for people and helped
them forecast the consequences
of clicks (based on real data
about what benefits and costs it
actually had?).

That’s why I add “estimat-
ed reading time” to the top of
my posts. When you put the
“true cost” of a choice in front
of people, you’re treating your
users or audience with digni-
ty and respect. In a Time Well
Spent Internet, choices could
be framed in terms of projected
cost and benefit, so people were
empowered to make informed
choices by default, not by doing
extra work.

Summary and how we
can fix this
Are you upset that technology
hijacks your agency? I am too.
I’ve listed a few techniques but
there are literally thousands.
Imagine whole bookshelves,
seminars, workshops and train-
ings that teach aspiring tech
entrepreneurs techniques like
these. Imagine hundreds of en-
gineers whose job every day is
to invent new ways to keep you
hooked.

The ultimate freedom is a
free mind, and we need technol-
ogy that’s on our team to help
us live, feel, think and act freely.

We need our smartphones,
notifications screens and web
browsers to be exoskeletons for
our minds and interpersonal re-
lationships that put our values,
not our impulses, first. People’s
time is valuable. And we should
protect it with the same rigor
as privacy and other digital
rights.

UPDATE: The first version of this post
lacked acknowledgements to those who
inspired my thinking over many years
including Joe Edelman, Aza Raskin, Raph
D’Amico, Jonathan Harris and Damon
Horowitz.

My thinking on menus and choice-
making are deeply rooted in Joe Edel-
man’s work on Human Values and
Choicemaking.

 TripAdvisor uses a “foot in the door” technique by asking

for a single click review (“How many stars?”) while hiding the three page

survey of questions behind the click.

Reprinted with permission of the original author. First appeared at medium.com/swlh.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28VNYnu
http://bit.ly/28VNYnu
http://bit.ly/28Rk1kU
http://bit.ly/28Rk1kU
http://bit.ly/28Rk1kU
http://bit.ly/28Rk1kU
http://bit.ly/28VnPXk
http://bit.ly/28SPGVr
http://bit.ly/28SjEHX
http://bit.ly/28SjEHX
http://bit.ly/28VO6TR
http://bit.ly/28RW6SI
http://bit.ly/28RW6SI
http://bit.ly/28SPUff
http://bit.ly/28SPUff
http://bit.ly/28RHCXz

17hacker bits

hackerbits.com/mobile

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://hackerbits.com/mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jul2016

18 hacker bits

By SEBASTIAN RASCHKA

Interesting

What is the difference
between deep learning and
usual machine learning?

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

19hacker bits

 Simple multi-layer perceptron

That's an interesting ques-
tion, and I’ll try to answer
this in a very general way.

In essence, deep learning offers
a set of techniques and algo-
rithms that help us to param-
eterize deep neural network
structures – artificial neural net-
works with many hidden layers
and parameters.

One of the key ideas behind
deep learning is to extract high
level features from the given
dataset. Thereby, deep learning
aims to overcome the challenge
of the often tedious feature
engineering task and helps with
parameterizing traditional neu-
ral networks with many layers.

Now, to introduce deep
learning, let us take a look at
a more concrete example in-

volving multi-layer perceptrons
(MLPs).

On a tangent: The term "per-
ceptron" in MLPs may be a bit
confusing since we don't really
want only linear neurons in our
network. Using MLPs, we want
to learn complex functions to
solve non-linear problems. Thus,
our network is conventionally
composed of one or multiple
"hidden" layers that connect the
input and output layer.

Those hidden layers normal-
ly have some sort of sigmoid ac-
tivation function (log-sigmoid or
the hyperbolic tangent etc.). For
example, think of a log-sigmoid
unit in our network as a logis-
tic regression unit that returns
continuous values outputs in the
range 0-1. A simple MLP could

look like the figure below.
In the figure below, y_hat

is the final class label that we
return as the prediction based
on the inputs (x) if this are clas-
sification tasks. The "a"s are our
activated neurons and the "w"s
are the weight coefficients.

Now, if we add multiple
hidden layers to this MLP, we'd
also call the network "deep." The
problem with such "deep" net-
works is that it becomes tougher
and tougher to learn "good"
weights for this network.

When we start training our
network, we typically assign
random values as initial weights,
which can be terribly off from
the "optimal" solution we want
to find. During training, we then
use the popular backpropaga-

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

20 hacker bits

tion algorithm (think of it as re-
verse-mode auto-differentiation)
to propagate the "errors" from
right to left and calculate the
partial derivatives with respect
to each weight to take a step
into the opposite direction of
the cost (or "error") gradient.

Now, the problem with deep
neural networks is the so-called
"vanishing gradient" — the more
layers we add, the harder it
becomes to "update" our weights
because the signal becomes
weaker and weaker. Since our
network's weights can be terri-
bly off in the beginning (random
initialization), it can become
almost impossible to parameter-
ize a "deep" neural network with
backpropagation.

Deep learning
Now, this is where "deep learn-
ing" comes into play. Roughly
speaking, we can think of deep
learning as "clever" tricks or
algorithms that can help us with
the training of such "deep" neu-
ral network structures.

There are many, many dif-
ferent neural network architec-
tures, but to continue with the
example of the MLP, let me in-
troduce the idea of convolution-
al neural networks (ConvNets).
We can think of those as an
"add-on" to our MLP that helps
us detect features as "good"
inputs for our MLP.

In applications of "usual" ma-
chine learning, there is typically
a strong focus on the feature
engineering part; the model

learned by an algorithm can only
be as good as its input data.

Of course, there must be
sufficient discriminatory infor-
mation in our dataset, however,
the performance of machine
learning algorithms can suffer
substantially when the informa-
tion is buried in meaningless
features. The goal behind deep
learning is to automatically learn
the features from (somewhat)
noisy data; it's about algorithms
that do the feature engineering
for us to provide deep neural
network structures with mean-
ingful information so that it can
learn more effectively.

We can think of deep learn-
ing as algorithms for automatic
"feature engineering," or we
could simply call them "feature
detectors," which help us to

 So-called "feature map"

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

21hacker bits

Reprinted with permission of the original author. First appeared at github.com/rasbt/python-machine-learning-book.

overcome the vanishing gradi-
ent challenge and facilitate the
learning in neural networks with
many layers.

Let's consider a ConvNet in
context of image classification.
Here, we use so-called "recep-
tive fields" (think of them as
"windows") that slide over our
image. We then connect those
"receptive fields" (for example
of the size of 5x5 pixel) with 1
unit in the next layer, this is the
so-called "feature map."

After this mapping, we have
constructed a so-called con-
volutional layer. Note that our
feature detectors are basically
replicates of one another – they
share the same weights. The
idea is that if a feature detector
is useful in one part of the ima-
gie, it is likely that it is useful
somewhere else, but at the same
time it allows each patch of the
image to be represented in sev-
eral ways.

Next, we have a "pooling"
layer, where we reduce neigh-
boring features from our feature
map into single units (by taking
the max feature or by averaging
them, for example). We do this
over many rounds and even-
tually arrive at an almost scale
invariant representation of our
image (the exact term is "equi-
variant"). This is very powerful
since we can detect objects in an
image no matter where they are
located.

In essence, the "convolution-
al" add-on that acts as a feature
extractor or filter to our MLP. Via
the convolutional layers we aim
to extract the useful features
from the images, and via the
pooling layers, we aim to make
the features somewhat equivari-
ant to scale and translation.

 Convolutional add-on layer

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/1QeeIRh

22 hacker bits

Email isn’t the thing you’re
bad at
By GLYPH LEFKOWITZ

Interesting

You and me, we’re bad at
a lot of things. But email
isn’t one of those things,

no matter how much it seems
like it.

I’ve been using the Internet
for a good 25 years now, and
I’ve been lucky enough to have
some perspective dating back
farther than that. The common
refrain for my entire tenure
here: We all get too much email.

A new, new, new, new
hope
Luckily, something is always on
the cusp of replacing email. AOL
Instant Messenger will totally
replace it. Then it was blog-
ging. RSS. MySpace. Then it was
FriendFeed. Then Twitter. Then
Facebook.

Today, it’s in vogue to talk
about how Slack is going to

replace email. As someone who
has seen this play out a dozen
times now, let me give you a
little spoiler: Slack is not going
to replace email.

But Slack isn’t the problem
here, either. It’s just another
communication tool.

The problem of email over-
load is both ancient and per-
sistent. If the problem were real-
ly with “email,” then presumably

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Uz0hi
http://bit.ly/28Ufa7q
http://bit.ly/28UzljJ
http://bit.ly/28X9RDQ
http://bit.ly/28X9RDQ

23hacker bits

placement in folders, archiving,
or deleting.

Contrast this with a group
chat in IRC, iMessage, or Slack,
where the log is mostly2 un-
changeable, and the only avail-
able annotation is “did your
scrollbar ever move down past
this point”; each individual
message has only one bit of
associated information. Unless
you have catlike reflexes and
an unbelievably obsessive-com-
pulsive personality, it is highly
unlikely that you will carefully
set the “read” flag on each and
every message in an extended
conversation.

All this makes email much
more suitable for communicat-

ing a task, because the recipient
can file it according to their
system for tracking tasks, come
back to it later, and generally
treat the message itself as an
artifact. By contrast if I were to
just walk up to you on the street
and say “hey can you do this for
me,” you will almost certainly
just forget.

The word “task” might seem
heavyweight for some of the
things that email is used for,
but tasks come in all sizes. One
task might be “click this link to
confirm your sign-up on this
website.” Another might be
“choose a time to get togeth-
er for coffee.” Or “please pass
along my résumé to your hiring
department.” Yet another might
be “send me the final draft of

one of the nine million email
apps that dot the app stores,
like mushrooms sprouting from
a globe-spanning mycelium,
would have just solved it by
now, and we could all move on
with our lives. Instead, it is per-
manently in vogue1 to talk about
how overloaded we all are.

If not email, then
what?
If you have twenty-four thousand
unread emails in your Inbox, like
some kind of goddamn animal,
what you’re bad at is not email,
it’s transactional interactions.

Different communication

the Henderson report.”
Email is also used for con-

veying information: here are the
minutes from that meeting we
were just in. Here is the tran-
scription of the whiteboard from
that design session. Here are
some photos from our fami-
ly vacation. But even in these
cases, a task is implied: read
these minutes and see if they’re
accurate; inspect this diagram
and use it to inform your design;
look at these photos and just
enjoy them.

So here’s the thing that
you’re bad at, which is why none
of the fifty different email apps
you’ve bought for your phone
have fixed the problem: when

you get these messages, you
aren’t making a conscious deci-
sion about:

1. how important the mes-
sage is to you

2. whether you want to act on
them at all

3. when you want to act on
them

4. what exact action you want
to take

5. what the consequences of
taking or not taking that
action will be

This means that when some-
one asks you to do a thing, you
probably aren’t going to do it.
You’re going to pretend to com-

What you’re bad at is not email,
it’s transactional interactions.

media have different character-
istics, but the defining charac-
teristic of email is that it is the
primary mode of communication
that we use, both professional-
ly and personally, when we are
asking someone else to perform
a task.

Of course you might use
any form of communication to
communicate tasks to another
person. But other forms — es-
pecially the currently popular
real-time methods — appear as
bi-directional communication
and are largely immutable.

Email’s distinguishing char-
acteristic is that it is discrete;
each message is its own entity
with its own ID. Emails may also
be annotated, whether with
flags, replied-to markers, labels,

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/299BGpH
http://bit.ly/299BGpH
http://bit.ly/28Ufsex
http://bit.ly/28Ufsex

24 hacker bits

mit to it, and then you’re going
to flake out when push comes
to shove. You’re going to keep
context-switching until all the
deadlines have passed.

In other words: The thing
you are bad at is saying ‘no’ to
people.

Sometimes it’s not obvious
that what you’re doing is saying
‘no’. For many of us — and I cer-
tainly fall into this category — a
lot of the messages we get are
vaguely informational.

They’re from random project
mailing lists, perhaps they’re
discussions between other
people, and it’s unclear what we
should do about them (or if we
should do anything at all). We
hang on to them (piling up in
our Inboxes) because they might
be relevant in the future. I am
not advocating that you have to
reply to every dumb mailing list
email with a 5-part action plan
and a Scrum meeting invite: that
would be a disaster. You don’t
have time for that. You really
shouldn’t have time for that

The trick about getting to
Inbox Zero3 is not in somehow
becoming an email-reading ma-
chine, but in realizing that most
email is worthless, and that’s
OK. If you’re not going to do
anything with it, just archive it
and forget about it.

If you’re subscribed to a
mailing list where only 1 out of
1,000 messages actually rep-
resents something you should
do about it, archive all the rest
after only answering the ques-

tion “is this the one I should
do something about?” You can
answer that question after just
glancing at the subject; there
are times when checking my
email I will be hitting “archive”
with a 1-second frequency. If
you are on a list where zero
messages are ever interesting
enough to read in their entirety
or do anything about, then of
course you should unsubscribe.

Once you’ve dug yourself
into a hole with thousands of
“I don’t know what I should do
with this” messages, it’s time to
declare email bankruptcy. If you
have 24,000 messages in your
Inbox, let me be real with you:
you are never, ever going to
answer all those messages. You
do not need a smartwatch to tell
you exactly how many messages
you are never going to reply to.

We’re in this together,
me especially
A lot of guidance about what to
do with your email deals with
email overload as a personal
problem. Over the years of de-
veloping my tips and tricks for
dealing with it, I certainly saw
it that way. But lately, I’m start-
ing to see that it has pernicious
social effects.

If you have 24,000 messages
in your Inbox, that means you
aren’t keeping track or setting
priorities on which tasks you
want to complete. But just be-
cause you’re not setting those
priorities, that doesn’t mean no-

body is. It means you are letting
availability heuristic — whatever
is “latest and loudest” — govern
access to your attention, and
therefore your time.

By doing this, you are re-
warding people (or #brands)
who contact you repeatedly,
over inappropriate channels,
and generally try to flood your
attention with their priorities
instead of your own. This, in
turn, creates a culture where it
is considered reasonable and
appropriate to assume that you
need to do that in order to get
someone’s attention.

Since we live in the era
of subtext and implication, I
should explicitly say that I’m
not describing any specific work
environment or community. I
used to have an email startup,
and so I thought about this
stuff very heavily for almost a
decade. I have seen email habits
at dozens of companies, and I
help people in the open source
community with their email on a
regular basis. So I’m not throw-
ing shade: almost everybody is
terrible at this.

And that is the one way that
email, in the sense of the tools
and programs we use to process
it, is at fault: technology has
made it easier and easier to ask
people to do more and more
things, without giving us better
tools or training to deal with
the increasingly huge array of
demands on our time. It’s easier
than ever to say “hey could you
do this for me” and harder than

If you’re not going to do anything with it,
just archive it and forget about it.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/299BZk6
http://bit.ly/291e8Wi
http://bit.ly/28SUhqg

25hacker bits

ever to just say “no, too busy.”
Mostly, though, I want you

to know that this isn’t just about
you any more. It’s about some-
one much more important than
you: me.

I’m tired of sending reply
after reply to people asking
to “just circle back” or asking
if I’ve seen their email. Yes,
I’ve seen your email. I have a
long backlog of tasks, and, like
anyone, I have trouble manag-
ing them and getting them all
done4, and I frequently have to
decide that certain things are
just not important enough to do.
Sometimes it takes me a couple
of weeks to get to a message.
Sometimes I never do. But, it’s
impossible to be mad at some-
body for “just checking in” for
the fourth time when this is
probably the only possible way
they ever manage to get anyone
else to do anything.

I don’t want to end on a
downer here, though. And I
don’t have a book to sell you
which will solve all your produc-
tivity problems. I know that if
I lay out some incredibly elab-
orate system all at once, it’ll
seem overwhelming. I know that
if I point you at some amazing
gadget that helps you keep track
of what you want to do, you’ll
either balk at the price or get
lost fiddling with all its knobs
and buttons, and not getting a
lot of benefit out of it. So if I’m
describing a problem that you
have here, here’s what I want
you to do.

Step zero is setting aside
some time. This will probably
take you a few hours, but trust
me, they will be well-spent.

Email bankruptcy
First, you need to declare email
bankruptcy. Select every mes-

sage in your Inbox older than 2
weeks. Archive them all, right
now.

In the past, you might have
to worry about deleting those
messages, but modern email
systems pretty much universally
have more storage than you’ll
ever need. So rest assured that if
you actually need to do anything
with these messages, they’ll all
be in your archive. But anything
in your Inbox right now that's
older than a couple of weeks
is just never going to get dealt
with, and it’s time to accept
that fact. Again, this part of the
process is not about making
a decision yet, it’s just about
accepting reality.

Mailbox three
One extra tweak I would sug-
gest here is to get rid of all of
your email folders and filters. It
seems like many folks with big
email problems have tried to ad-
dress this by ever-finer-grained
classification of messages, ever
more byzantine email rules. For
me, it’s common, when looking
over someone’s shoulder to see
24,000 messages, it’s common
to also see 50 folders. Probably
these aren’t helping you very
much.

In older email systems, it
was necessary to construct elab-
orate header-based filtering sys-
tems so that you can later iden-
tify those messages in certain
specific ways, like “message X
went to this mailing list”. Howev-
er, this was an incomplete hack,
a workaround for a missing
feature. Almost all modern email
clients (and if yours doesn’t do
this, switch) allow you to locate
messages like this via search.

Your mail system ought to
have 3 folders:

1. Inbox, which you process
to discover tasks

2. Drafts, which you use to
save progress on replies

3. Archive, the folder which
you access only by search-
ing for information you
need when performing a
task

Getting rid of unnecessary fold-
ers and queries and filter rules
will remove things that you can
fiddle with.

Moving individual units of
trash between different heaps of
trash is not being productive. By
removing all the different fold-
ers you can shuffle your mes-
sages into before actually acting
upon them, you will make better
use of your time spent looking
at your email client.

There’s one exception to
this rule, which is filters that do
nothing but cause a message to
skip your Inbox and go straight
to the archive. The reason that
this type of filter is different is
that there are certain sources or
patterns of messages which are
not actionable, but rather, a use-
ful source of reference material
that is only available as a stream
of emails. Messages like that
should, indeed, not show up in
your Inbox. But, there’s no rea-
son to file them into a specific
folder or set of folders; you can
always find them with a search.

Make a place for
tasks
Next, you need to get a task
list. Your email is not a task
list; tasks are things that you
decided you’re going to do, not
things that other people have
asked you to do5. Critically,
you are going to need to parse

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Ufymr
http://bit.ly/28Ufymr
http://bit.ly/290NVHp
http://bit.ly/290NVHp

26 hacker bits

emails into tasks. To explain
why, let’s have a little arithmetic
aside.

Let’s say it only takes you
45 seconds to go from reading
a message to deciding what it
really means you should do; so,
it only takes 20 seconds to go
from looking at the message to
remembering what you need to
do about it.

This means that by the time
you get to 180 unprocessed
messages that you need to do
something about in your Inbox,
you’ll be spending an hour a day
doing nothing but remembering
what those messages mean,
before you do anything related
to actually living your life, even
including checking for new mes-
sages.

What should you use for
the task list? On some level,
this doesn’t really matter. It
only needs one really important
property: you need to trust that
if you put something onto it,
you’ll see it at the appropriate
time. How exactly that works
depends heavily on your own
personal relationship with your
computers and devices; it might
just be a physical piece of paper.
But for most of us living in a
multi-device world, something
that synchronizes to some kind
of cloud service is important,
so Wunderlist or Remember the
Milk are good places to start,
with free accounts.

Turn messages into
tasks
The next step — and this is
really the first day of the rest of
your life — start at the oldest
message in your Inbox, and
work forward in time. Look at
only one message at a time. De-
cide whether this message is a
meaningful task that you should
accomplish.

If you decide a message
represents a task, then make
a new task on your task list.
Decide what the task actually is,
and describe it in words; don’t
create tasks like “answer this
message.” Why do you need to
answer it? Do you need to gather
any information first?

If you need to access infor-
mation from the message in or-
der to accomplish the task, then
be sure to note in your task how
to get back to the email. De-
pending on what your mail client
is, it may be easier or harder to
do this6, but in the worst case,
following the guidelines above
about eliminating unnecessary
folders and filing in your email
client, just put a hint in your
task list about how to search for
the message in question unam-
biguously.

Once you’ve done that, ar-
chive the message immediately.

The record that you need to
do something about the mes-
sage now lives in your task list,
not your email client. You’ve

processed it, and so it should no
longer remain in your inbox.

If you decide a message
doesn’t represent a task, then
archive the message immediate-
ly.

Do not move on to the
next message until you have
archived this message. Do not
look ahead7. The presence of a
message in your Inbox means
you need to make a decision
about it. Follow the touch-move
rule with your email. If you skip
over messages habitually and
decide you’ll “just get back to
it in a minute,” that minute will
turn into 4 months and you’ll
be right back where you were
before.

Circling back to the subject
of this post; once again, this
isn’t really specific to email. You
should follow roughly the same
workflow when someone asks
you to do a task in a meeting,
or in Slack, or on your Discourse
board, or wherever, if you think
that the task is actually import-
ant enough to do. Note the Slack
timestamp and a snippet of the
message so you can search for
it again, if there is a relevant at-
tachment. The thing that makes
email different is really just the
presence of an email box.

Banish the blue dot
Almost all email clients have a
way of tracking “unread” mes-

Tasks are things that you decided
you’re going to do, not things that
other people have asked you to do.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/299D2AO
http://bit.ly/28V0OQk
http://bit.ly/28V0OQk
http://bit.ly/28V2bxJ
http://bit.ly/28V2bxJ

27hacker bits

sages; they cheerfully display
counters of them. Ignore this
information; it is useless. Mes-
sages have two states: in your
inbox (unprocessed) and in
your archive (processed). “Read”
vs. “Unread” can be, at best, of
minimal utility when resuming
an interrupted scanning session.
But, you are always only ever
looking at the oldest message
first, right? So none of the mes-
sages below it should be unread
anyway...

Be ruthless
As you try to start translating
your flood of inbound commu-
nications into an actionable
set of tasks you can actually
accomplish, you are going to
notice that your task list is going
to grow and grow just as your
Inbox was before.

This is the hardest step:
Decide you are not going to do
those tasks, and simply delete
them. Sometimes, a task’s entire
life-cycle is to be created from
an email, exist for ten minutes,

you get from some automated
system provokes this kind of
reaction, that will give you a clue
that said system is wasting your
time, and just making you feel
anxious about work you’re never
really going to get to, which can
then lead to you unsubscribing
or filtering messages from that
system.

Tasks before
messages
To thine own self, not thy Inbox,
be true.

Try to start your day by
looking at the things you’ve
consciously decided to do. Don’t
look at your email; don’t look
at Slack; look at your calendar,
and look at your task list. One of
those tasks, probably, is a daily
reminder to “check your email,”
but that reminder is there more
to remind you to only do it once
than to prevent you from forget-
ting.

I say “try” because this part
is always going to be a chal-
lenge; while I mentioned earlier

that you don’t want to unthink-
ingly give in to availability heu-
ristic, you also have to acknowl-
edge that the reason it’s called
a “cognitive bias” is because it’s
part of human cognition.

There will always be a con-
stant anxious temptation to just
check for new stuff; for those
of us who have a predisposition

towards excessive scanning
behavior, we have it more than
others.

Why email?
We all need to make commit-
ments in our daily lives. We need
to do things for other people.
And when we make a commit-
ment, we want to be telling the
truth. I want you to try to do
all these things so you can be
better at that.

It’s impossible to truthfully
make a commitment to spend
some time to perform some
task in the future if, realistically,
you know that all your time in
the future will be consumed by
whatever the top 3 highest-pri-
ority angry voicemails you have
on that day are.

Email is a challenging social
problem, but I am tired of email,
especially the user interface of
email applications, getting the
blame for what is, at its heart, a
problem of interpersonal rela-
tions.

It’s like noticing that you

Start your day by looking at
the things you’ve consciously
decided to do.

and then have you come back to
look at it and delete it.

This might feel pointless,
but in going through that pro-
cess, you are learning some-
thing extremely valuable: you
are learning what sort of things
are not actually important
enough to do.

If every single message

get a lot of bills through the
mail, and then blaming the state
of your finances on the colors
of the paint in your apartment
building’s mail room. Of course,
the UI of an email app can en-
courage good or bad habits, but
Gmail gave us a prominent “Ar-
chive” button a decade ago, and
we still have all the same terrible

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28SUhqg
http://bit.ly/28SUhqg
http://bit.ly/28V10zi
http://bit.ly/28V10zi

28 hacker bits

habits that were plaguing Out-
look users in the 90s.

Of course, there’s a lot more
to “productivity” than just mak-
ing a list of the things you’re
going to do. Some tools can
really help you manage that list
a lot better. But all they can help
you do is to stop working on the
wrong things, and start working
on the right ones.

Actually being more pro-
ductive, in the sense of getting
more units of work out of a
day, is something you get from
keeping yourself healthy, happy,
and well-rested, and not from an
email filing system.

You can’t violate causali-
ty to put more hours into the
day, and as a frail and finite
human being, there’s only so
much work you can reasonably
squeeze in before you die.

The reason I care a lot about
salvaging email specifically is
that it remains the best medium
for communication that allows
you to be in control of your own
time, and by extension, the best
medium for allowing people to
do creative work.

Asking someone to do some-
thing via SMS doesn’t scale; if
you have hundreds of unread
texts there’s no way to put them
in order, no way to classify them
as “finished” and “not finished”,
so you need to keep it to the
number of things you can fit in
short term memory.

Not to mention the fact that
text messaging is almost by

definition an interruption — by
default, it causes a device in
someone’s pocket to buzz. Ask-
ing someone to do something in
group chat, such as IRC or Slack,
is similarly time-dependent; if
they are around, it becomes an
interruption, and if they’re not
around, you have to keep asking
and asking over and over again,
which makes it really inefficient
for the asker (or the asker can
use a @highlight, and assume
that Slack will send the recipi-
ent, guess what, an email).

Social media often comes up
as another possible replacement
for email, but its sort order is
even worse than “only the most
recent and most frequently
repeated.” Messages are instead
sorted by value to advertisers or
likeliness to increase ‘engage-
ment’”, i.e. most likely to keep
you looking at this social media
site rather than doing any real
work.

For those of us who require
long stretches of uninterrupt-
ed time to produce something
good — “creatives,” or whatever
today’s awkward buzzword for
intersection of writers, program-
mers, graphic designers, illustra-
tors, and so on, is — we need an
inbound task queue that we can
have some level of control over.

Something that we can check
at a time of our choosing, some-
thing that we can apply filtering
to in order to protect access to
our attention, something that
maintains the chain of request/

reply for reference when we
have to pick up a thread we’ve
had to let go of for a while.
Some way to be in touch with
our customers, our users, and
our fans, without being con-
stantly interrupted.

Because if we don’t give
those who need to communi-
cate with such a tool, they’ll just
blast @everyone messages into
our Slack channels and @mentions
onto Twitter and texting us Hey,
got a minute? until we have to
quit everything to try and get
some work done.

Questions about this post?

Go ahead and send me an
email.

Acknowledgements
As always, any errors or bad ideas are
certainly my own.

First of all, to Merlin Mann, whose
writing and podcasting were the inspira-
tion, direct or indirect, for many of my
thoughts on this subject; and who sets a
good example because he won’t answer
your email.

Thanks also to David Reid for intro-
ducing me to Merlin's work, as well as
Alex Gaynor, Tristan Seligmann, Donald
Stufft, Cory Benfield, Piët Delport, Amber
Brown, and Ashwini Oruganti for feed-

back on drafts.

Email...remains the best medium
for communication that allows you
to be in control of your own time.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28SVgXl
http://bit.ly/290P2qv
http://bit.ly/28TweFr
http://bit.ly/28YsesR
http://bit.ly/290OT6w
http://bit.ly/290OT6w
mailto:glyph%40twistedmatrix.com?subject=
mailto:glyph%40twistedmatrix.com?subject=
http://bit.ly/28Tl43T
http://bit.ly/28UAVSP
http://bit.ly/28UAVSP

29hacker bits

Reprinted with permission of the original author. First appeared at glyph.twistedmatrix.com.

Notes
1. Email is so culturally per-

vasive that it is literally in
Vogue, although in fair-
ness this is not a reference
to the overflowing-Inbox
problem that I’m discuss-
ing here.

2. I find the “edit” function in
Slack maddening; although
I appreciate why it was
added, it’s easy to retroac-
tively completely change
the meaning of an entire
conversation in ways that
make it very confusing for
those reading later. You
don’t even have to do this
intentionally; sometimes
you make a legitimate
mistake, like forgetting the
word “not,” and the next 5
or 6 messages are about
resolving that confusion;
then, you go back and
edit, and it looks like your
colleagues correcting you
are a pedantic version of
Mr. Magoo, unable to see

that you were correct the
first time.

3. There, I said it. Are you
happy now?

4. Just to clarify: nothing in
this post should be con-
strued as me berating you
for not getting more work
done, or for ever failing to
meet any commitment no
matter how casual. Quite
the opposite: what I’m
saying you need to do is
acknowledge that you’re
going to screw up and
rather than hold a thou-
sand emails in your inbox
in the vain hope that you
won’t, just send a quick
apology and move on.

5. Maybe you decided to do
the thing because your
boss asked you to do it
and failing to do it would
cost you your job, but
nevertheless, that is a con-
scious decision that you

are making; not everybody
gets to have “boss” priori-
ty, and unless your job is a
true Orwellian nightmare,
not everything your boss
says in email is an instant
career-ending catastrophe.

6. In Gmail, you can usually
just copy a link to the mes-
sage itself. If you’re using
OS X’s Mail.app, you can
use this Python script to
generate links that, when
clicked, will open the Mail
app (see figure below).
You can then paste these
links into just about any
task tracker; if they don’t
become clickable, you can
paste them into Safari’s
URL bar or pass them to
the open command-line
tool.

7. The one exception here is
that you can look ahead
in the same thread to see
if someone has already
replied.

from __future__ import (print_function, unicode_literals,

 absolute_import, division)

from ScriptingBridge import SBApplication

import urllib

mail = SBApplication.applicationWithBundleIdentifier_("com.apple.mail")

for viewer in mail.messageViewers():

 for message in viewer.selectedMessages():

 for header in message.headers():

 name = header.name()

 if name.lower() == "message-id":

 content = header.content()

 print("message:" + urllib.quote(content))

 Python code to generate message link in OS X's Mail.app

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28V2PeD
http://bit.ly/28YsEiF
http://bit.ly/28YsEiF

30 hacker bits

Programming

By PETER WELCH

How to worry less about
being a bad programmer

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

31hacker bits

I just came across anoth-
er manifestation of imposter
syndrome, in the form of Am I
really a developer or just a good
googler?

The answer I read missed
the point, so I'm going to break
this mess down, because too
many people are afraid for no
good reason.

The fact that
information is easy to
find doesn't make you
stupid
This is one of those stories
I hear so often I assume it's
apocryphal, but fact or fiction,
the point stands: When asked
for his phone number, Einstein
looked it up, saying why should
he memorize something he can
find in less than two minutes?

In the 80s, the mark of the
nerd was owning an encyclope-
dia. You didn't even have to read
most of it: The most impressive
encyclopedia in my house was
from 1937, and the entry about
the Nazi party was two para-
graphs implying it was no big
deal.

Simply knowing about one of
the most incredibly wrong bits
of information ever written —
which I learned from one of the

very things I used to get infor-
mation — put me in the smart
club. Because back then, inter-
esting information was hard to
get, and the mere impulse to go
find it made you a nerd.

Now that even the most
ignorant plebeians can get
whatever information they want,
the nerd elite have retreated and
proclaimed there's some essen-
tial brain function that allows
them to navigate the informa-
tion deluge better than everyone
else.

As in all the most attractive
fallacies, there's a transistor of
truth in the notion: It's easy to
feel superior to people who use
the Internet to look for articles
linking vaccines to lizard people.

But it's also easy to feel in-
ferior when you waste an entire
day struggling with a bug before
remembering to search Stack
Overflow, where you discover
five people had figured it out
three years ago and two of them
think anyone who wasn't born
knowing the answer is an idiot.

The new populist informa-
tion retrieval engine may make
you feel weak for using some-
thing that anyone can use, but
that's a terrible elitist emotion
you should stamp out along with
all your secret homophobia.

Forget all this crap
about loving your job
My favorite job of all time was
washing dishes. I was good at
it, and I could do it on autopi-
lot, and it left my brain free to
go braining. The best part? If I
looked haggard at the end of the
day after cleaning two thousand
plates for a four hundred top
restaurant, nobody sat me down
and asked why I wasn't more
enthusiastic about my scrubbing
technique.

If loving your job was a
nonnegotiable prerequisite for
doing it, civilization would col-
lapse. I'm sure somebody finds
spiritual satisfaction bench-
marking the speed differential
between i++ and ++i in their
for loops, and thank God for
them because somebody has to
program our nuclear guidance
systems.

The rest of us are just pray-
ing that the number of unread
warnings in the "debug" email
folder doesn't start going up so
fast that we actually have to deal
with it.

The important part about
jobs in the old days, before they
took away the martini lunch-
es and threw up motivational
posters, wasn't that you loved it;
the important part was that you
didn't hate it and didn't make
your coworkers hate it.

It's...easy to feel inferior when you
waste an entire day struggling with
a bug before remembering to search
Stack Overflow...

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

32 hacker bits

Now that they've successful-
ly pedaled softcore happywork
porn to a generation desperate
for salaried positions, it's okay
for our employers to tell us to
keep our cell phones handy
on Christmas Eve. It's okay for

some codehumper to make ev-
erybody else hate their job and
themselves, because, hey, that
guy loves what he does, and if
you don't, it's your own fault for
not spending Saturday nights
masturbating to tail recursion
tutorials.

You can't win a
perkiness contest
against sales
Modern startups call out
high-functioning apathy in
the worst way. Because of the
technology created by the peo-
ple who truly did love hacking
tape-based technology, we have
a bunch of companies that are
comprised of a sales department
and a tech department, because
every other job has been out-
sourced to a website run by
another company composed of
a sales department and a tech
department.

If you're in sales, loving or
pretending to love your job is an
integral part of that job. That's
what makes the sales bucks.
If you're in tech, your job is to
make something work, and you
can be as bitter as you need to

be to get that job done, because
the only product you're selling
is your ability to implement the
Stripe api, and nobody has to be
aggressively cheerful for that to
happen.

All your company meetings
consist of attractive and bright-
eyed sales people contrasting
the tired dev team that wishes
the meeting would end because
they're already wondering how
long it's going to take them to
figure out the race condition
bug that they know isn't really a
race condition because it's never
lupus.

You can't worry about this.
Maybe you're socially compe-
tent, attractive and bright-eyed,
maybe you're not. It has nothing
to do with your job.

Ignore the pedants
Of course somebody will say,
"Every programmer should know
X."

I don't know X. For any val-
ue. Bubble sort? I assume that
has something to do with Guin-
ness and Harp. B-tree? Sounds
like an evergreen. Hash table? I
learned programming in PHP, so
it was two years before I knew a

hash table was different from an
array. I didn't know the differ-
ence between a hash table and
an array when OkCupid hired
me.

The gods themselves trem-
ble before the judgmentalism of
an OkCupid toilet paper dispens-
er, but they still gave me a job.

No matter what program-
ming job you have, there will be
a vast amount of programming
you do not understand. If you
manage to learn every program-
ming language in the universe,
some Russian twelve-year-old
will mock you for not knowing
how to overclock your CPU.

Simultaneously, a Korean kid
will hack your PS4 account while
an American sucks down a latte
and asks you why you haven't
closed a series B. The French
ops person just spits at you
when you ask her to stop smok-
ing in the server room.

It's kind of cool to be STEM
smart now, because a particular
application of a particular kind

No matter what programming job you
have, there will be a vast amount of
programming you do not understand.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

33hacker bits

of logical problem solving puts
the everywhiteman in a position
to make an upper middle class
income while making the busi-
ness school graduates richer
than anybody in the history
of human civilization has ever
been.

Since the first bubble gener-
ation of CTOs grew up without a
lot of sex but with a whole lot of
microchips on their shoulders,
the culture they accidentally cre-
ated is a culture obsessing over
the ability to apply mathematics
in whatever obscure way they
thought mathematics should be
applied, and everyone else can
go kill themselves.

If they needed that, fine.
When you're living pre-Google
or pre-Vim, you need something
to sustain you through the dark
hours of discovering your Amiga
doesn't remember your anniver-
sary because you don't have an
anniversary and probably never
will.

Programming is new, and
the original John McLanes who
had to dig through machine
code are still alive and accusing
the rest of us of being lazy. But
programming is now a job like
any other, because everything
you need to do to satisfy your
BizDev team can be learned
without reverse-engineering
the prototype for Thag's Move
Things Better Octagon.

Interviews are hell,
get over it
You will walk into any given
interview with what you think of
as a cornucopia of arcane knowl-
edge all but forcing its way out

of your tear ducts to raise prop-
erty values in a half mile radius.

Much of the time, you will
walk out of that interview want-
ing to give up and raise guinea
pigs for a living. Every human
knows things other humans do
not, and most of us will even-
tually be in a position where
another human is determining
our future employment based
on us knowing things very few
humans know.

All interview processes are
flawed. They will be flawed for
as long as we lack an algorithm
to predict a candidate's ability to
produce work and not be a jerk,
based on a smattering of nearly
random input.

An interview is a date with
fifty thousand dollars on the line
and no condom. No matter the
profession, it is a waste of arro-
gance to claim the problem can
be fixed if a couple of people
think real hard about it.

Exactly no one knows what's
going on anymore, but a lot of
people are drawing paychecks
and clicks by maintaining the
illusion that they do. Some of
them will interview you, and
there's nothing you can do
about it. When it starts to give
you imposter syndrome, trea-
sure it, because anybody who
doesn't have imposter syndrome
is a fool.

Make money
Did you get a paycheck last
week? If so, good. You're ahead
of the curve. Do you work in
programming? Yes? Well, last
week's paycheck just set you up
above the heads of 80 percent

of the world's wage earners, to
say nothing of people who can't
get a job.1 If you get a paycheck
next week, you're not a fraud.

Where you see a mass of
rotting spaghetti kludge send-
ing usable energy to a pointless
death, your bosses see a black
box labelled "Guy Who Speaks
Computer Good."2 They put
money in, something happens,
and lo! A product emerges that
gets them more money.

You may compare yourself to
Tesla's wet dreams and wish you
were a tenth as prescient as Ada
Lovelace, but you shouldn't and
you're not. Might as well grow
your first beard in eleventh cen-
tury Norway and assume you're
Thor. You're not Thor. You're
the poet who stayed on the boat
and got to breed because every-
one else was dead.

If you get confusing sexual
feelings about pointers and 3D
graphics equations, power to
you: you were born in a gener-
ation that respects you directly,
and indirectly worships you in
a really creepy way. If you just
need a job and are able and will-
ing to accept that computers are
measurably dumber than lem-
mings, you have everything you
need to keep the information
age running.

1 God knows we prefer to say nothing

about them.

2 "WARNING: Do not test for drugs. Dry
clean only."

Reprinted with permission of the original author. First appeared at stilldrinking.org.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/299EFhG

34 hacker bits

Programming

Last year I made a decision
that I won’t be using Rails
anymore, nor will I support

Rails in gems that I maintain.
Furthermore, I will do my best
to never have to work with Rails
again at work.

Since I’m involved with many
Ruby projects and people have
been asking me many times why
I don’t like Rails, what kind of
problems I have with it and so
on, I decided to write this long
post to summarize and explain
everything.

This is a semi-technical,
semi-personal and unfortunately
semi-rant. I’m not writing this
to bring attention, get visitors
or whatever, I have no interest
in that at all. I’m writing this
because I want to end my dis-
cussions about Rails and have a

By PIOTR SOLNICA

place to refer people to when-
ever I hear the same kind of
questions.

I would also like to tell you a
couple of stories that “younger
Rails devs” have probably never
heard of, and highlight some is-
sues that are important enough
to at least think about them.

The good part
I’m not going to pretend that
everything about Rails is bad,
wrong, evil or damaging. That
would not be fair, and is plain
stupid. There’s a lot of good
stuff that you can say about
Rails. I’m going to mention a
couple of (obvious?) things for
good balance.

So, Rails has made Ruby
popular. It’s a fact. I’ve become

a Ruby developer, which in turn
changed my career and gave me
a lot of amazing opportunities,
thanks to Rails. Many Rubyists
these days have gone down
the same path. We are all here
thanks to Rails.

In many cases, Rails actu-
ally made tremendous impact
on people’s lives, making them
much better. Literally. People
got better jobs, better opportu-
nities, and better money. This
was a game-changer for many
of us.

Over the years Rails & DHH
have inspired many people,
including people from other
communities, to re-think what
they’re doing. For example, I’m
pretty sure Rails has contribut-
ed to improvements in the PHP
community (you can try to prove

My time with Rails is up

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

35hacker bits

I’m wrong but I have a pretty
vivid memory of Symfony frame-
work taking heaps of inspiration
from Rails). The same happened
in Java (yes), and Play framework
is an example.

Now, architecture design
issues aside — this was a good
thing. Being inspired to think
outside of the box and do
something new is valuable. Rails
contributed to that process on a
large scale.

There are other aspects of
Rails that are fantastic. Because
Rails has always focused on the
ease of usage and the ability to
quickly build web applications,
it made it possible for initiatives
like Rails Girls to succeed. Rails
has proven to people that they
are capable of creating some-
thing on their own, without any
programming experience, in rel-
atively short time. This is amaz-
ing, as it can easily become a
gateway to the programming
world for people who otherwise
wouldn’t even consider becom-
ing a programmer.

My journey
First of all, let me tell you a little
bit about my background and
where I’m coming from.

I started working with Ruby
in late 2006, as my bachelor
thesis was about Rails (yep).
I’ve been learning the language
while I was writing my thesis. It
was fun, it was exciting, and it

was something new for me.
Back then, I was still working

as a PHP developer. As a typical
PHP developer back in ~ 2005
- 2006, I’ve done all the typical
things — wrote raw sql queries
in view templates, choked on
procedural PHP to death, then
built my own framework, my
own ORM, got frustrated and
burned out.

Despite knowing some C,
C++, Java and Python, I decid-
ed to go with Ruby, because of
Rails. I picked it up for my thesis
and completely accidentally
stumbled upon a job offer from
a local Rails shop. I applied, and
they hired me. It was in March of
2007.

And so since March 2007,
I’ve been working with Ruby pro-
fessionally, and since roughly
2009 - 2010, I started contribut-
ing to Ruby OSS projects. During
that time, I worked for a con-
sultancy for 3.5 years, mostly
working on big and complicated
projects. I then went freelance
for a few years, worked with
a bunch of clients, started my
own company, took a full-time
gig, then went back to freelance
again, and now I’m a full-time
employee again. I built green-
field rails apps and I helped with
medium-xxl rails apps.

Let me tell you a story about
what can happen in a convoluted
Rails codebase. Once, I joined
an existing project. It was a
huuuuge app that was running
an online shopping communi-

ty website. Complicated sales
model, complicated promotions,
complicated product setups,
coupons, user groups, messages
— it had it all.

I joined them to help ship
a few new features. One of my
early tasks was to…add a link
to something on some page. It
took me a few days to add this
stupid link. Why? The app was a
big ball of complex domain logic
scattered across multiple layers
with view templates so compli-
cated, it wasn’t even simple to
find the right template where
the link was supposed to be
added.

Since I needed some data
in order to create that link, it
wasn’t obvious how I should get
it. There was a lack of internal
application APIs and relying on
ActiveRecord exclusively made
it extremely difficult. I am not
kidding you.

My initial frustrations with
Rails started quite early. I’ve be-
come displeased with ActiveRe-
cord after roughly the first 6
months of using it. I never liked
how Rails approached handling
JavaScript and AJAX. In case you
don’t remember or you were not
around already, before Rails ad-
opted UJS approach (which was a
big subject in ~ 2007-2008, with
blog posts, conference talks and
so on), it used inline Javascript
generated by a bunch of nasty
helpers.

As with everything Rails, it
was “nice and easy in the begin-

As with everything Rails, it was “nice
and easy in the beginning” and then it
would turn into unmaintainable crap.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

36 hacker bits

ning” and then it would turn into
unmaintainable crap. Eventual-
ly, Rails adopted UJS in the big
version 3.0 rewrite and it seems
like the community agreed that
it’s a better approach. This was
when Merb was killed by merged
into Rails. Oh, you don’t know
what Merb was? Right, let’s talk
about that.

Why I was excited
about Merb &
DataMapper
Merb was a project created by
Ezra Zygmuntowicz. It started
as a hack to make file uploads
faster and thread-safe. It went
through an interesting path
from that hack to a full-stack,
modular, thread-safe, fast web
framework. I remember people
started talking about it a lot
~2008 and there was this amaz-
ing feeling that something new
is happening and it’s gonna be
great.

You might be excited about
Rails adding “API mode”, right?
Well, Merb had 3 modes: a
full-stack mode, an API mode
and a micro-mode where it was
stripped down to bare minimum
and I still remember it was the
fastest thing ever in Ruby land.
It was over 7 years ago. Ponder
on that.

At the same time, another
project brought community
attention — DataMapper. It
became a part of The Merb
Stack, being its ORM of choice.
I got really excited about it, as
it addressed a lot of issues that
ActiveRecord had. DataMapper
back in ~ 2008 - 2009 already
had attribute definitions in mod-
els, custom types, lazy queries,
more powerful query DSL and so
on.

In 2008, Yehuda Katz was

one of the core contributors,
and he was actively promoting
the project and there was a lot
of excitement about it. DataMap-
per was ultimately a better ORM
than ActiveRecord in 2008-2009.
It would be unfair not to men-
tion that Sequel showed up al-
ready around the same time and
till this day it’s being used way
less than ActiveRecord despite
being a superior solution.

I was excited about Merb
and DataMapper as they brought
hope that we can do things
better and create healthy com-
petition for Rails. I was excited
about it because both proj-
ects promoted more modular
approach and thread-safety,
amongst other things like simply
better Ruby coding standards.

Both projects were ultimate-
ly killed by Rails as Merb was
“merged” into Rails, in what
turned out to be a major Rails
refactor for its 3.0 version.
DataMapper lost its communi-
ty attention and without much
support, it never evolved as it
could if Merb was not “merged”
into Rails.

With that decision, the Ruby
ecosystem lost a bunch of im-
portant projects and only Rails
benefited from this. Whether the
decision to kill Merb was good
or not is a matter of personal
opinion, we can speculate what
could’ve happened if the deci-
sion wasn’t made.

However, there’s a simple
truth about competition — it’s
healthy. Lack of competition
means monopoly, and there’s
a simple truth about monopoly
— it’s not healthy. Competition
fosters progress and innovation,
competition creates a healthi-
er ecosystem, it allows people
to collaborate more, to share
what’s common, and to build
better foundations. This is not

what’s happening in the Ruby
community.

After Merb & DataMapper
were practically destroyed (in
the long term), building any-
thing new in the Ruby ecosystem
turned out to be extremely diffi-
cult., Since peoples’ attention is
Rails-focused, new projects have
been highly influenced by Rails.

Breaking through with new
ideas is hard, to say the least,
as every time you come up with
something, people just want it
to be Rails-like and work well
with Rails. Making things work
with Rails is hard, but I’ll get to
it later.

After all these years we’ve
ended up with one framework
dominating our entire ecosys-
tem, influencing thousands of
developers and creating stan-
dards that are…questionable.
We’ve lost a diverse ecosystem
that started to grow in 2008 and
was taken over by Rails.

Hey, I know how this sounds
almost like a conspiracy theory,
but don’t treat it like that. What
I’ve said here are facts with a
little bit of my personal feelings.
I started contributing to Data-
Mapper in late 2009 and seeing
it crumble was very sad.

Complexity!
Complexity is our biggest ene-
my. People have become less en-
thusiastic about Rails, because it
quickly turned out that dealing
with growing complexity leaves
us with lots of unanswered
questions. What DHH & co. have
offered has never been enough
to address many issues that
thousands of developers started
to struggle with already back in
~2007-2008.

Some people hoped that
maybe Merb/DataMapper will
bring improvements but you

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28SVP3t
http://bit.ly/28Vo5D0

37hacker bits

know what happened now, so
we were all back using Rails
again in 2010, when Rails 3.0
was released.

A couple of days ago some-
body posted on /r/ruby a link to
an article about organizing your
code using “Service Objects”.
This is one of many articles like
that. If you think it’s some kind
of a recent trend, go take a look
at James Golick’s article from
March 2010 — Crazy, Heretical,
and Awesome: The Way I Write
Rails Apps.

We’ve been talking about
ways of improving the architec-
ture of our Rails applications for
roughly 6 years. I’ve been trying
to contribute to this discussion
as much as I could, with articles,
conference talks and by working
on many OSS projects that strive
to solve various hard problems.

The arguments and ideas
people have had are always
ridiculed by the Rails Core Team
members, and especially by
DHH. This has been off-putting
and discouraging for me, and
the reason why I never tried to
contribute to Rails. I’m pretty
damn sure that my proposals
would end up being drastically
downvoted.

Monkey-patches? C’mon,
not a problem, we love our

10.years.ago! New abstractions?
Who needs that, Rails is SIMPLE!
TDD? Not a problem, it’s dead,
don’t bother! ActiveRecord
is bloated — so what, it’s so
handy and convenient, let’s add
more features instead!

Rails ecosystem, especially
around its core team, has nev-
er made a good impression on
me and I don’t have a problem
admitting that I’m simply afraid
of proposing any changes. This
is especially so since the first is-
sue I’d submit would be “Please
remove ActiveSupport” (ha-ha…
imagine that!).

OK let’s get into some tech
details.

Rails convenience-
oriented design
As I mentioned, Rails has been
built with the ease of use in
mind. Do not confuse this with
simplicity. Just yesterday I stum-
bled upon this tweet, and it says
it all (see figure below).

This is how Rails works, clas-
sic example:

User.create(params[:user])

You see a simple line of code,
and you can immediately say

(assuming you know User is an
AR model) what it’s doing. The
problem here is that people con-
fuse simplicity with convenience.
It’s convenient (aka “easy”) to
write this in your controller and
get the job done, right?

Now, this line of code is not
simple, it’s easy to write it, but
the code is extremely complicat-
ed under the hood because:

• params must often go
through db-specific coer-
cions

• params must be validated

• params might be changed
through callbacks, including
external systems causing
side-effects

• invalid state results in set-
ting error messages, which
depends on external system
(i.e. I18n)

• valid params must be set as
object’s state, potentially
setting up associated objects
too

• a single object or an entire
object graph must be stored
in the database

This lacks basic separation
of concerns, which is always
damaging for any complex proj-
ect. It increases coupling and
makes it harder to change and
extend code.

But in Rails world, this isn’t
a problem. In Rails world, basic
design guidelines like SRP (and
SOLID in general) are being ridi-
culed and presented as “bloated,
unneeded abstractions causing
complexity”.

When you say you’d prefer to
model your application use cas-
es using your own objects and
make complex parts explicit,
Rails leaders will tell you YAGNI.
When you say you’d prefer to

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28UB8pf
http://bit.ly/294Brxh
http://bit.ly/294Brxh
http://bit.ly/294Brxh
http://bit.ly/28U1qVX
http://bit.ly/28UhpHG
http://bit.ly/28UhpHG

38 hacker bits

use composition, which makes
your code more reliable and
flexible, Rails leaders, except
tenderlove, will tell you “use
ActiveSupport::Concerns”.

For a Rails developer, it’s
not a problem that data coming
from a web form are being sent
to the depths of ActiveRecord
where God knows what will
happen.

The really challenging part
in this discussion is being able
to explain that it is a problem in
the first place. People are at-
tracted by Rails because it gives
you a false sense of simplicity,
whereas what really happens is
that complexity is being hidden
by convenient interfaces. These
interfaces are based on many
assumptions about how you’re
gonna build and design your
application. ActiveRecord is just
one, representative example,
but Rails is built with that phi-
losophy in mind, and every piece
of Rails works like that.

I should mention that I know
there are huge efforts to make
ActiveRecord better, like in-
troducing Attributes API (done
through some serious internal
refactoring which improved the
code base). Unfortunately, as
long as ActiveRecord comes
with over 200 public methods,
and encourages the usage of
callbacks and concerns, this will
always be an ORM that will not
be able to handle growing com-
plexity, and it’ll only contribute
to this complexity and make
things worse.

Will that change in Rails? I
don’t think so. We have zero
indication that something can
be improved as Rails leaders
are simply against it. Simple
proof is the recent controversial
addition, ActiveRecord.suppress
was proposed by DHH himself.
Notice how yet again he makes

fun of standalone Ruby class-
es saying “Yes, you could also
accomplish this by having a
separate factory for CreateCom-
mentWithNotificationsFactory”.
Oh boy.

ActiveCoupling
Should Rails be your application?
This was an important question
asked by many after watch-
ing Uncle Bob’s talk, where he
basically suggests a stronger
separation between the web
part and your actual core appli-
cation. Technical details aside,
this is good advice, but Rails
has not been designed with that
in mind. If you’re doing it with
Rails, you’re missing the whole
point of this framework. In fact,
take a look at what DHH said
about this (see figure above).

It’s pretty clear what his
thoughts are, right? The import-
ant part is “of course it is”. And
you know what? I wholeheartedly
agree!

Rails is your application, and
it will always be, unless you go
through the enormous effort of
using it in a way that it wasn’t
meant to be used.

Think about this:

• ActiveRecord is meant to
become the central part of
your domain logic. That’s
why it comes with its gi-
gantic interface and plenty
of features. You only break
things down and extract log-
ic into separate components
when it makes sense, but
Rails philosophy is to put
stuff to ActiveRecord, not
bother about SRP, not bother
about LoD, not bother about
tight coupling between do-
main logic and persistence
and so on. That’s how you
can use Rails effectively.

• The entire view “layer”
in Rails is coupled to Ac-
tiveModel, thus making it
coupled to an Active Record
ORM (it could be Sequel, it
doesn’t matter).

• Controllers, aka your web
API endpoints, are the inte-
gral part of Rails, tight-cou-
pling takes place here too.

• Helpers, the way you deal
with complex templates in
Rails, are also an integral
part of Rails, tight-coupling
once again.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28UB7Sg
http://bit.ly/28V3o8n
http://bit.ly/28V45ya

39hacker bits

• Everything in Rails, and in a
plethora of 3rd party gems
built for Rails, is happening
through inheritance (either
mixins or class-based). Rails
and 3rd party gems don’t
typically provide standalone,
reusable objects, they pro-
vide abstractions that your
objects inherit — this is an-
other form of tight-coupling.

With that in mind, it would
be crazy to think that Rails is
not your application. If you try
to avoid this type of coupling,
you can probably imagine what
kind of effort it would be and
how much of the built-in func-
tionality you’d lose — and this is
exactly why showing alternative
approaches in Rails create an
impression of bloated, unnec-
essary abstractions reminding
people of their “scary” Java
days.

Rails has not been built
with loose-coupling and compo-
nent-oriented design in mind.
Don’t fight it. Accept it.

Not a good citizen
Having said all of that, my big-
gest beef with Rails is actually
ActiveSupport. Since I ranted
about it already, I don’t feel like
I need to repeat myself. I also

recommend going through the
comments in the linked blog
post.

The only thing I’d like to add
is that because of ActiveSupport,
I don’t consider Rails to be a
good citizen in the Ruby ecosys-
tem. This library is everything
that is wrong with Rails for me.
No actual solutions, no solid
abstractions, just nasty work-
arounds to address a problem
at hand, workarounds that turn
into official APIs, and cargo-cult-
ed as a result. Gross.

Rails is a closed ecosystem,
and it imposes its bad require-
ments on other projects. If you
want to make something work
with Rails, you gotta take care of
things like making sure it actu-
ally works fine when ActiveSup-
port is required, or that it can
work with the atrocious code
reloading in development mode,
or that objects are being provid-
ed as globals because you know,
in Rails everything should be
available everywhere, for your
convenience.

The way Rails works de-
mands a lot of additional effort
from developers building their
own gems. First of all, it is ex-
pected that your gems can work
with Rails (because obviously
everybody is going to use them
with Rails), and that itself is a
challenge.

You have a library that deals
with databases and you want to
make it work with Rails? Well,
now you gotta make it work like
ActiveRecord, more or less, be-
cause the integration interface is
ActiveModel, originally based on
ActiveRecord prior Rails 3.0.

There are plenty of con-
straints here that make it very
hard to provide integration with
Rails.

You have no idea how many
issues you may face when trying
to make things work with hot
code reloading in development
mode. Rails expects a global,
mutable run-time environment.
To make it even harder for ev-
erybody, they introduced Spring.
This gem opened up a whole
category of potential new bugs
that your gems may face while
you try to make them work with
Rails.

I’m so done with this, my
friends. Not only is code reload-
ing in Ruby unreliable, but it’s
also introducing a lot of com-
pletely unnecessary complexity
to our gems and applications.
This affects everybody who’s
building gems that are supposed
to work with Rails.

Nobody from the Rails Core
team, despite the criticism
throughout the years, thought
that maybe it’d be a good idea
to see how it could be done

Rails has not been built with loose-
coupling and component-oriented
design in mind.
Don’t fight it. Accept it.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28TlzL4
http://bit.ly/28TlzL4

40 hacker bits

better. If someone focused on
making application code load
faster, we could just rely on
restarting the process. Besides,
you should really use automated
testing to see if a change you
just made actually works, rather
than hitting F5. Just saying.

I know it sounds like com-
plaining, because it is! I’ve tried
to support Rails and it was just
too frustrating for me. I’ve given
up, and I don’t want to do it
anymore.

Since my solution to the
problems I’ve had would mean
ditching ActiveSupport, remov-
ing Active Record as the pattern
of choice, and adding an actual
view layer that’s decoupled from
any ORM, I realized that it’s un-
reasonable to think this will ever
happen in Rails.

Leaving Rails
As a result of 9 freaking years
of working with Rails and con-
tributing like hell to many Ruby
OSS projects, I’ve given up. I
don’t believe anything good can
happen with Rails. This is my
personal point of view, but many
people share the same feelings.

At the same time, there’s
many more who are still hap-
py with Rails. Good for them!
Honestly! Rails is here to stay,
it’s got its use cases, it still helps
people and it’s a mature, well
maintained, stable web frame-
work. I’m not trying to convince
anybody that Rails is ultimately
bad! It’s just really bad for me.

This decision has had its
consequences though. This is
why I got involved with dry-rb,
hanami and trailblazer projects
and why I’ve been working on
rom-rb too. I want to help to
build a new ecosystem that will
hopefully bring back the same
kind of enthusiasm that we all

felt when Merb/DataMapper was
a thing.

We need a diverse ecosys-
tem, and we need more small,
focused, simple and robust
libraries. We need Rubyists who
feel comfortable using frame-
works as well as smaller librar-
ies.

(Sort of) leaving Ruby
Truth is, leaving Rails is also the
beginning of my next journey
— leaving Ruby as my primary
language. I’ve been inspired by
functional programming for the
last couple of years. You can
see that in the way I write Ruby
these days. I’m watching Elixir
growing with great excitement.
I’m also learning Clojure, which
at the moment is on the top of
my “languages to learn” list. The
more I learn it, the more I love
it.

My ultimate goal is to learn
Haskell too, as I’m intrigued by
static typing. Currently at work,
I’ve been working with Scala. I
could very quickly appreciate
static typing there, even though
it was a rough experience ad-
justing my development work-
flow to also include compilation/
dealing with type errors steps.
It is refreshing to see my edi-
tor tell me I'd made a mistake
before I even get to running any
tests.

The more I learn about
functional programming, the
more I see how Rails is behind
when it comes to modern appli-
cation design. Monkey-patching,
relying on global mutable state,
complex ORM, these things are
considered major problems in
functional languages.

I know many will say “but
Ruby is an OO language, use
that to your advantage instead
of trying to make it what it can-

not be” — this is not true. First
of all, Ruby is an OO language
with functional features (blocks,
method objects, lambdas, any-
one?).

Secondly, avoiding mutable
state is in general, good advice
which you can apply in your
Ruby code. Ditching global state
and isolating it when you can’t
avoid it is also really good gen-
eral advice.

Anyhow, I’m leaving Ruby.
I’ve already started the process.
It’s gonna take years, but that’s
my direction. I will continue
working on and supporting rom-
rb, dry-rb, helping with hanami
and trailblazer, so don’t worry,
these projects are very import-
ant for me and it makes me very
happy seeing the communities
grow.

Common feedback/
questions
This is a list of made-up feed-
back and questions, but it’s
based on actual, real feedback
I’ve been receiving.

Shut up. Rails is great and
works very well for me.

This is the most common
feedback I receive. First of all,
it worries me that many people
react like that. We’re discussing
a tool, not a person, no need
to get emotional. Don’t get me
wrong, I understand that it’s
natural to “defend” something
that helped you and that you
simply like it, at the same time
it’s healthy to be able to think
outside the box, and be open
to hear criticism and just think
about it. If you’re happy with
Rails, that’s great, really.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Zr6W8
http://bit.ly/28U1Zz9
http://bit.ly/28VXTM7
http://bit.ly/28Xc4im

41hacker bits

You’re just complaining,
you’re not helping, you
haven’t done anything to
help Rails become better,
you haven’t suggested any
solutions to the problems
you’re describing.

This type of feedback used
to make me very angry and
sad. In the moment of writing
this, and according to GitHub, I
made 2,435 contributions in the
last year. That was in my spare
time. Yes, I haven’t contribut-
ed to Rails directly, because of
the reasons I explained in this
article. There’s too much I dis-
agree with and it would’ve been
a waste of time for both parties.
I’ve been contributing through
blog posts, conference talks and
thousands of lines of OSS code
that you can find on GitHub.

It’s OSS, just fork it.

This misses the point com-
pletely. We need diversity in the
ecosystem with a good selection
of libraries, and a couple of
frameworks with their unique
feature-sets making them
suitable for various use cases.
A fork of Rails would make no
sense. Nobody would fork Rails
to go through a struggle like
removing ActiveSupport and
de-coupling the framework from
concepts like Active Record
pattern. It’s easier and faster
to build something new, which
other people are already doing
(see Hanami).

Just don’t use Rails

I did stop using Rails last
year, but it’s not happening

“just like that”. Being a Ruby
developer means that in 99% of
the cases your client work will
be Rails. Chances of getting a
gig without Rails are close to 0.
“Selling” alternative solutions for
clients is risky unless you are
100% sure you’re gonna be the
one maintaining a project for a
longer period.

What is happening right now
is that some businesses, in most
of the cases, have two choices:
go with Rails or not go with
Ruby and pick a completely dif-
ferent technology. People won’t
be looking at other solutions in
Ruby, because they don’t feel
confident about them and they
are not interested in supporting
them. I’m talking about common
cases here, there are exceptions
but they are extremely rare.

OK cool, but what are you
suggesting exactly?

My suggestion is to take a
really good look at the current
Ruby ecosystem and think about
its future. The moment some-
body builds a web framework
in a better language than Ruby,
that provides similar, fast-pace
prototyping capabilities, Rails
might become irrelevant for
businesses. When that happens,
what is it that the Ruby ecosys-
tem has to offer?

If we want Ruby to remain
relevant, we need a stronger
ecosystem with better libraries
and alternative frameworks that
can address certain needs better
than Rails, so that businesses
will continue to consider using
Ruby (or keep using Ruby!).
We’ve got over a decade of
experience, we’ve learned so
much, and we can use that to
our advantage.

You obviously have some
personal agenda. I don’t
trust your judgements.

I don’t! I’ve got my OSS
projects, I’m working on a book,
I have a rom-rb donation cam-
paign and I understand that this
creates an impression that I'm
simply looking to gain some-
thing here.

That’s not true, and this is
not why I’m doing it. I’ve been
working so hard first and fore-
most because I enjoy learning,
experimenting, collaborating
with people, and simply because
I care about Ruby’s future. The
reason why I decided to write a
book is because explaining all
the new concepts we’ve intro-
duced in various libraries is
close to impossible without a
book.

My donation campaign was
started because I’ve invested
countless hours into the project
and I couldn’t continue doing
that because I was too busy
with client work and, you know,
something called life.

Reprinted with permission of the original author and solnic.eu.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28U1Zz9
http://bit.ly/28Yq9eC

42 hacker bits

Programming

Programmers are not
different, they need simple
UIs
By SALVATORE SANFILIPPO

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

43hacker bits

I’m spending days trying to get
a couple of APIs right. New
APIs about modules, and a

new Redis data type.
I really mean it when I say

days, just for the API. Writing
drafts, starting the implementa-
tion shaping data structures and
calls, and then restarting from
scratch to iterate again in a bet-
ter way, to improve the design
and the user-facing part.

Why do I do that, delaying
features for weeks? Is it really so
important?

Programmers are engineers,
maybe they should just adapt to
whatever API is better to export
for the system exporting it.

Should I really reply to my
rhetorical questions? No, it is no
longer needed today, and that’s
a big win.

I want to assume that this
point is tacit, taken for granted,
that programmers also have
user interfaces, and that such
user interfaces are so crucial to
completely change the percep-
tion of a system. Database query
languages, libraries calls, pro-
gramming languages, and Unix
command line tools, they all
have a user interface part. If you
use them daily, to you, they are
more UIs than anything else.

So if this is all well known,
then why am I here writing this
blog post? Because I want to
stress how important the con-
cept of simplicity is, not just in
graphical UIs, but also in UIs
designed for programmers.

The act of iterating again
and again to find a simple UI
solution is not a form of perfec-
tionism, it’s not futile narcis-
sism. It is more an exploration
in the design space. It is some-
times huge, made of small varia-
tions that make a big difference,
and made of big variations that
completely change the point
of view. There are no rules to
follow but your sensibility. Yes
there are good practices, but

they are not a good compass
when the sea to navigate is one
of the design space.

So why should programmers
have this privilege of having
good, simple UIs? Sure, there is
the joy of using something well
made, that is great to handle,
that feels right. But there is a
more central question.

Learning to configure Send-
mail via M4 macros, or strug-
gling with an Apache virtual host
setup is not real knowledge.
If such a system one day is no
longer in use, what remains in
your hands, or better, in your
neurons? Nothing. This is ad hoc
knowledge. It is like junk food:
empty calories without micronu-
trients.

For programmers, the mi-
cronutrients are the ideas that
last for decades, not the ad hoc
junk. I don’t want to ship junk,
so I’ll continue to refine my
designs before shipping. You
should not accept junk, and
your neurons are better spent to
learn general concepts.

However, in part it is inev-
itable: every system will have
something that is not general
that we need to learn in order to
use it. Well, if that’s the deal, at
least, let’s make the ad hoc part
a simple one, and if possible,
something that is even fun to
use.

Reprinted with permission of the original author and antirez.com.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/1OrieXN

44 hacker bits

How to win
the coding interview

Programming

By BILL SOUROUR

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

45hacker bits

I’ve designed and conduct-
ed dozens of coding interviews.
Now, I’m going to show you how
to beat me every single time.

Let’s be honest, most de-
velopers don’t love having
to write code as part of an

interview process. Some have
even threatened to quit the busi-
ness over it. But it’s not going
to change any time soon. So,
if you’re serious about getting
a job, you need to understand
how to succeed at these inter-
views. I’m here to help. We’re
going to go over what I look for
in a coding interview and by the
end, you should have a pretty
good idea of how to succeed.

Before I start though, I have
to say, if a company is going to
hire a developer based solely
and entirely on a piece of code
the developer wrote in an inter-
view, you probably don’t want to
work there.

Part 1 — Whiteboard
coding
Who on Earth writes code on a
whiteboard? Like, seriously. But
I’m still going to ask you to do
it. Don’t worry, I haven’t lost
my mind. I get that Google is a
thing and that whiteboards suck
at autocomplete. I don’t care.
I’m not actually testing how well
you write code on a whiteboard.
I’m looking for something else.

When you get the job, you
will never have to code on a
whiteboard, but I guarantee
you this, there will come a time
when we are banging our heads
against a problem and there is
a deadline looming and we’re
tired and people are pissed at us
and money and jobs and repu-
tations are all on the line. When
that time comes, we’re going to

have to get into a boardroom,
hop on a whiteboard, and figure
things out. Fast.

“I’m not actually testing
how well you write code on
a whiteboard.”

While I don’t need a devel-
oper who can write code on a
whiteboard, I do need a devel-
oper who can think on her feet,
under pressure, in a room with
others. The problem is, if you
don’t understand what I am
actually testing, you’re going
to approach this task all wrong.
You’re going to try to prove that
you are a whiteboard coding nin-
ja. This is dumb. No one needs a
whiteboard coding ninja. Here’s
how to win me over:

1. Verbalize your assumptions
and seek to confirm them.

The best developers know that,
fundamentally, every bug is the
result of an invalid assumption.
So, before you jump in and start
coding, think about what as-
sumptions you might be mak-
ing, and ask me about them.

2. Think out loud.

I want to get some insights into
your thought process. Knowing
that you understand how to
reason about a problem is far
more valuable to me than know-
ing that you’ve memorized the
name of some built-in function.
So, think out loud. Say what’s on
your mind.

3. Don’t be afraid to ask for
help.

If you’re stuck or don’t know
something, ask me. Do you
have any idea how fantastically
expensive it is to hire someone
who refuses to ask for help
when he is stuck? I have no
time for a developer who fails

to deliver because he pretended
he had everything under control
while being completely lost and
floundering.

4. Represent your skills and
experience honestly.

Having said all of the above, I
also don’t want to mislead you.
There is a threshold for ques-
tions and commentary. If you
are asking me about things that
should be obvious to someone
who presents with the skills
and experience listed on your
résumé, that’s going to be a red
flag. So, before we get to the
whiteboard coding, make sure
you’ve been honest in represent-
ing your skills and experience to
me.

Part 2 — Coding on a
computer
Unlike the whiteboard, if I give
you a computer and ask you to
write code, I am testing how well
you can code. More specifically,
I am testing how well you can
code to spec.

The best way to understand
what to do here is to look at a
real world example. One of my
favorite questions goes like this:

A palindrome is a word,
phrase, number, or other
sequence of characters
which reads the same
backward or forward.

Allowances may be made
for adjustments to capital
letters, punctuation, and
word dividers. Examples in
English include “A man, a
plan, a canal, Panama!”,
“Amor, Roma”, “race car”,
“stack cats”, “step on no
pets”, “taco cat”, “put it
up”, “Was it a car or a cat I

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28ZrkwD
http://bit.ly/28ZrkwD

46 hacker bits

saw?” and “No ‘x’ in Nixon”.

Write the most efficient
function you can that de-
termines whether a given
string is a palindrome.

Your function should ac-
cept a string as a param-
eter and return a boolean
(true if the string is a pal-
indrome, false if it is not).

Assume that this code will
be put into a real pro-
duction system and write
accordingly.

When I offer a challenge like
this in an interview, the first
thing I’m looking for is whether
or not you ask me any ques-
tions. As I said before, the best
coders understand that assump-
tions are what kill you in this
business. My advice to anyone
who is handed instructions and
asked to code something is to
take a moment and consider
what assumptions they will
have to make in order to com-
plete the task (there are always
assumptions) and then find a
way to confirm or clarify those
assumptions.

I understand that in an in-
terview situation, people go into
“test mode” and feel like they’re
not allowed to speak. What I
suggest is that you start by ask-
ing the interviewer “Am I allowed
to ask you 1 or 2 questions just
to clarify some assumptions?”.
If the interviewer says “no”, then
just do your best. If they say
“yes” (I would always say “yes”)
then you have a HUGE advan-
tage.

Good questions for this par-
ticular challenge would be:

• “Is this client-side or serv-
er-side JavaScript?”

• “For the purposes of this
exercise, should an empty
string be considered valid
input?”

• “Do I need to handle unicode
characters?”

The next thing I’m looking
for is how well you can follow in-
structions. For example, I spec-
ified a string input parameter
and a Boolean output parameter.
Is that what you delivered?

After that, I want to see how
you interpret the phrase “As-
sume that this code will be put
into a real production system
and write accordingly”. If you
have built real software before,
you should take that phrase to
mean a few things:

• Your code should be com-
mented.

• You should have error han-
dling or at least logging.

• Your code should avoid
breaking at all costs.

• You should have a test har-
ness.

• Your code should be easy-
to-read and self-explanatory
(clear variable names, good
formatting, ideally “lint free”
code).

If you have only ever seen
code in tutorials and books,
you won’t know that any of the
above is expected. My advice to
you is to go look at the code for
popular open source projects.
Especially projects that have
been around a long time and are
stable. For JavaScript, the jQuery
codebase on GitHub is a pretty
good example.

Next, I want to see what you
make of the word “efficient”
when combined with “produc-

tion system”. If you’re experi-
enced, you should know that
“efficient” in production code
means three things:

1. Runs fast.
2. Doesn’t take up more

memory than it needs to.
3. Is stable and easy to main-

tain.

You should understand that
#3 sometimes means small sac-
rifices to #1 and #2.

On this particular challenge,
I am expecting many will use
RegEx as a part of the solution.
The regex needed for this is
some of the most basic regex
out there, and regex is univer-
sal to many languages, and it’s
fast and extremely handy (edit:
RegEx is not necessarily always
fast, thanks AlexDenisov). It’s
not unreasonable to expect that
you know the basics of RegEx,
but you could still write an an-
swer without it.

For tests, I want to see that
you included multiple tests,
but that each test is testing a
truly different scenario. Testing
“mom”, “dad”, and “racecar” is
redundant, they are all the same
test. I also want to see that you
included breaking tests; test for
something that is not a palin-
drome. Consider edge cases,
test for null or a number. Test
for an empty string, or a bunch
of special characters.

I use this test on all levels
of developers, but my criteria is
stricter the more senior I expect
you to be.

For junior devs, if you can
produce a working solution
that’s reasonably straightfor-
ward and the rest of the inter-
view goes well, I expect that I’ll
be able to train you up.

For an intermediate dev, I
want to see some comments in

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28V2iKn

47hacker bits

there and good coding style. I
want to see an efficient solution
and hopefully a test case.

For senior devs, I want an
optimal solution, clean, main-
tainable code, error handling,
comments, a full suite of tests.
And for bonus points I want you
to flag any of your assumptions
in the comments. For exam-
ple, if you use console.log()
in client-side JavaScript add a
comment that tells me you know
there should be server-side log-
ging in production.

Here is an example of a
good answer written in JavaS-
cript.

Obviously, there are other
ways to write a passing answer,
but that should give you an idea.

If I give you a challenge to
take home, my expectations are
even higher. If you get a week to
code something with full ac-
cess to Google, etc…there’s no
excuse for giving me a solution
that is anything less than top-
notch.

Part 3 — Algorithms
Some interviewers will ask you
to code an implementation of a
particular algorithm. Personally,
I think that’s just a giant waste
of time. It’s far more import-
ant to me that you understand
which algorithm to apply to
which problem. You can always
Google the implementation.

Nevertheless, because in-
terviewers will ask, you should
brush up on the biggies ahead
of time. Khan Academy has a
great free course.

Part 4 — Passing
without solving the
problem
If you are unable to solve the
problem I give you, there are
things you can do to stay in the
running for the job.

1. Don’t give up too easily

Make sure I see that you’ve put
in a real effort. If you’re the type
who’s going to give up as soon
as the going gets tough, I have
no time for you.

2. Pseudo-code it

If you’re having trouble be-
cause you don’t recall a certain
function name or some other
syntactic rule, use comments
to explain what you were trying
to do in pseudo-code. If I feel
like you’re just a quick Google
search away from solving the
problem, it will go a long way
toward your cause. Especially if
you have an excellent interview
otherwise.

3. List your known unknowns

As an absolute “Hail Mary” if you
are totally stumped, you can
list for me all the things that
you know you don’t know and
describe how, in a real world
scenario, you would go about
figuring those things out. Be as
specific as possible. If you tell
me you’d ask for help, tell me
who you would ask (the role)
and what you would ask them
(the specific question, if possi-
ble). If you tell me you’d search
online, tell me exactly what
search strings you would use.

In this scenario, you really need
to go out of your way to con-
vince me that you could solve
the problem if you were actually
working for me.

Part 5 — Practice,
practice, practice
Arguably, the most important
thing in passing a coding inter-
view is to be well prepared. The
best way to do that is to prac-
tice common interview coding
questions over and over and
over again until you know them
cold. If you practice enough, and
really work at it, you’ll even be
able to handle a question you’ve
never seen before. You’ll have
confidence and you’ll be able
to relate it to something else
you’ve probably tried.

I’ve put together a massive
list of online resources with
sample questions and advice
for coding in over 50 different
languages and technologies;
including C#, JavaScript, Mongo,
Node, and so on…

You can get the list here.

Reprinted with permission of the original author and blog.devmastery.com.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28VppWy
http://bit.ly/28VppWy
http://bit.ly/28U2DMX
http://bit.ly/28Tmnjg
http://bit.ly/28V3fCI

48 hacker bits

Web Storage: the lesser evil
for session tokens

Interesting

By JAMES KETTLE

I was recently asked whether
it was safe to store session
tokens using Web Storage

(sessionStorage/localStorage) in-
stead of cookies. Upon googling
this, I found the top results
nearly all assert that web stor-
age is highly insecure relative
to cookies, and therefore not
suitable for session tokens. For
the sake of transparency, I've
decided to publicly document
the rationale that led me to the
opposite conclusion.

The core argument used
against Web Storage says be-
cause Web Storage doesn't sup-
port cookie-specific features like
the Secure flag and the HttpOnly
flag, it's easier for attackers
to steal it. The path attribute
is also cited. I'll take a look at
each of these features and try
to examine the history of why
they were implemented, what
purpose they serve and wheth-

er they really make cookies the
best choice for session tokens.

The secure flag
The secure flag is quite import-
ant for cookies, and outright
irrelevant for web storage. Web
Storage adheres to the Same
Origin Policy, which isolates data
based on an origin consisting of
a protocol and a domain name.

Cookies need the secure
flag because they don't properly
adhere to the Same Origin Policy
— cookies set on https://exam-
ple.com will be transmitted to
and accessible via http://exam-
ple.com by default. Conversely,
a value stored in localStorage
on https://example.com will
be completely inaccessible to
http://example.com because the
protocols are different.

In other words, cookies are
insecure by default, and the

secure flag is simply a bodge
to make them as resilient to
MITM attacks as Web Storage.
Web Storage used over HTTPS
effectively has the secure flag by
default. Further information on
related nuances in the Same Or-
igin Policy can be found in The
Tangled Web by Michal Zalewski.

The path attribute
The path attribute is widely
known to be pretty much use-
less for security. It's another
example of where cookies are
out of sync with the Same Origin
Policy — paths are not consid-
ered part of an origin so there's
no security boundary between
them. The only way to isolate
two applications from each oth-
er at the application layer is to
place them on separate origins.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
https://mzl.la/28Ujd3l
http://bit.ly/294DSQe
https://mzl.la/28Zt2xT
http://bit.ly/299ICTx
http://bit.ly/28YruCv
http://bit.ly/28YruCv

49hacker bits

The HttpOnly flag
The HttpOnly flag is an almost
useless XSS mitigation. It was in-
vented back in 2002 to prevent
XSS being used to steal session
tokens. At the time, stealing
cookies may have been the most
popular attack vector — it was
four years later that CSRF was
described as the sleeping giant.

Today, I think any competent
attacker will exploit XSS using a
custom CSRF payload or drop a
BeEF hook. Session token steal-
ing attacks introduce a time-de-
lay and environment shift that
makes them impractical and er-
ror prone in comparison — see
Why HttpOnly Won't Protect You
for more background on why.
This means that if an attacker is
proficient, HttpOnly won't even
slow them down. It's like a WAF
that's so ineffective attackers
don't even notice it exists.

The only instance I've seen
where HttpOnly was a significant
security boundary is on bugzilla.
mozilla.org. Untrusted HTML
attachments are served from a
subdomain which has access
to the parent domain's ses-
sion cookies thanks to cookies'
not-quite-same-origin-policy.
Ultimately as with the secure
flag, the HttpOnly flag is only
really required to make cookies
as secure as web storage.

Differences that
matter
One major difference between
the two options is that unlike
cookies, web browsers don't au-
tomatically attach the contents
of web storage to HTTP requests
— you need to write JavaScript
to attach the session token to a
HTTP header.

This actually conveys a huge
security benefit, because it
means the session tokens don't
act as an ambient authority. This
makes entire classes of exploits
irrelevant. Browsers' behaviour
of automatically attaching cook-
ies to cross-domain requests is
what enables attacks like CSRF
and cross-origin timing attacks.

There's a specification for
yet another another cookie
attribute to fix this very problem
in development at the moment
but for now to get this property,
your best bet is Web Storage.

Meanwhile, the unhealthy
state of the cookie protocol
leads to crazy situations where
the cookie header can contain
a blend of trusted and untrust-
ed data. This is something the
ill-conceived double-submit
CSRF defence fell foul of. The
solution for this is yet another
cookie attribute: Origin.

Unlike cookies, web storage
doesn't support automatic expi-
ry. The security impact of this is

minimal as expiry of session to-
kens should be done server-side,
but it is something to watch
out for. Another distinction is
that sessionStorage will expire
when you close the tab rather
than when you close the brows-
er, which may be awesome or
inconvenient depending on your
use case. Also, Safari disables
Web Storage in private browsing
mode, which isn't very helpful.

This post is intended to ar-
gue that Web Storage is often a
viable and secure alternative to
cookies. Web Storage isn't ideal
for session token storage in
every situation — retrofitting it
to a non single-page application
may add a significant request
overhead, Safari disables Web
Storage in private browsing
mode, and it's insecure in Inter-
net Explorer 8. Likewise, if you
do use cookies, please use both
Secure and HttpOnly.

Conclusion
At first glance it looks like cook-
ies have more security features,
but they're ultimately patches
over a poor core design. For an
in depth assessment of cookies,
check out HTTP cookies, or how
not to design protocols. Web
Storage offers an alternative
that, if not secure by default, is
less insecure by default.

Web Storage offers an alternative
that, if not secure by default,
is less insecure by default.

Reprinted with permission of the original author. First appeared at blog.portswigger.net.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Tmdsb
http://bit.ly/28Tmdsb
http://bit.ly/294DvW3
http://bit.ly/294DvW3
http://bit.ly/28V3xcz
http://bit.ly/290S7Hm
http://bit.ly/290S7Hm
http://bit.ly/28VYXzP
http://bit.ly/28U3ld2
http://bit.ly/28YvzYC
http://bit.ly/28YvzYC
http://bit.ly/28UxbSQ
http://bit.ly/28UxbSQ
http://bit.ly/28UxbSQ
http://ubm.io/28ZMSJq
http://bit.ly/294RScZ
http://bit.ly/28TvIrn
http://bit.ly/28TvIrn
http://bit.ly/28ZMXwE
http://bit.ly/28ZMXwE
http://bit.ly/294S5wE

50 hacker bits

By CHRIS BEAMS

Programming

How to write a git commit
message

Introduction: Why good commit
messages matter

If you browse the log of any random git reposito-
ry, you will probably find its commit messages
are more or less a mess. For example, take a

look at these gems from my early days commit-
ting to Spring (see Figure 1).

Yikes. Compare that with these more recent
commits from the same repository. (see Figure 2)

Which would you rather read?
The former varies wildly in length and form;

the latter is concise and consistent. The former is
what happens by default; the latter never happens
by accident.

While many repositories' logs look like the for-
mer, there are exceptions. The Linux kernel and
git itself are great examples. Look at Spring Boot,
or any repository managed by Tim Pope.

The contributors to these repositories know
that a well-crafted git commit message is the
best way to communicate context about a change
to fellow developers (and indeed to their future
selves). A diff will tell you what changed, but only

the commit message can properly tell you why.
Peter Hutterer makes this point well:

Re-establishing the context of a piece of code
is wasteful. We can't avoid it completely,
so our efforts should go to reducing it [as
much] as possible. Commit messages can do
exactly that and as a result, a commit mes-
sage shows whether a developer is a good
collaborator.

If you haven't given much thought to what
makes a great git commit message, it may be the
case that you haven't spent much time using git
log and related tools.

There is a vicious cycle here: because the com-
mit history is unstructured and inconsistent, one
doesn't spend much time using or taking care of
it. And because it doesn't get used or taken care
of, it remains unstructured and inconsistent.

But a well-cared for log is a beautiful and
useful thing. git blame, revert, rebase, log, shortlog
and other subcommands come to life. Reviewing
others' commits and pull requests becomes some-

Credit: xkcd.com

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28UxtsY
http://bit.ly/29a8lew
http://bit.ly/28TvG2x
http://bit.ly/28TdSXk
http://bit.ly/28YKy59
http://bit.ly/28Vp4ky
http://bit.ly/28Uc8fa
http://bit.ly/291dDvl
http://bit.ly/28UczWW

51hacker bits

thing worth doing, and suddenly can be done
independently. Understanding why something
happened months or years ago becomes not only
possible but efficient.

A project's long-term success rests (among
other things) on its maintainability, and a main-
tainer has few tools more powerful than his proj-
ect's log. It's worth taking the time to learn how
to care for one properly. What may be a hassle at
first soon becomes habit, and eventually a source
of pride and productivity for all involved.

In this post, I am addressing just the most ba-
sic element of keeping a healthy commit history:
how to write an individual commit message. There
are other important practices like commit squash-
ing that I am not addressing here. Perhaps I'll do
that in a subsequent post.

Most programming languages have well-estab-
lished conventions as to what constitutes idiomat-
ic style, i.e. naming, formatting and so on. There
are variations on these conventions, of course,
but most developers agree that picking one and
sticking to it is far better than the chaos that en-
sues when everybody does their own thing.

A team's approach to its commit log should be

no different. In order to create a useful revision
history, teams should first agree on a commit
message convention that defines at least the fol-
lowing three things:

Style – markup syntax, wrap margins, grammar,
capitalization, punctuation. Spell these things out,
remove the guesswork, and make it all as simple
as possible. The end result will be a remarkably
consistent log that's not only a pleasure to read
but that actually does get read on a regular basis.

Content – what kind of information should the
body of the commit message (if any) contain?
What should it not contain?

Metadata – how should issue tracking IDs, pull
request numbers, etc. be referenced?

Fortunately, there are well-established conven-
tions as to what makes an idiomatic git commit
message. Indeed, many of them are assumed in
the way certain git commands function. There's
nothing you need to re-invent. Just follow the sev-
en rules below and you're on your way to commit-
ting like a pro.

$ git log --oneline -5 --author cbeams --before "Fri Mar 26 2009"

e5f4b49 Re-adding ConfigurationPostProcessorTests after its brief removal in r814. @Ig-
nore-ing the testCglibClassesAreLoadedJustInTimeForEnhancement() method as it turns out this
was one of the culprits in the recent build breakage. The classloader hacking causes sub-
tle downstream effects, breaking unrelated tests. The test method is still useful, but should
only be run on a manual basis to ensure CGLIB is not prematurely classloaded, and should not
be run as part of the automated build.

2db0f12 fixed two build-breaking issues: + reverted ClassMetadataReadingVisitor to revision
794 + eliminated ConfigurationPostProcessorTests until further investigation determines why
it causes downstream tests to fail (such as the seemingly unrelated ClassPathXmlApplication-
ContextTests)

147709f Tweaks to package-info.java files
22b25e0 Consolidated Util and MutableAnnotationUtils classes into existing AsmUtils
7f96f57 polishing

$ git log --oneline -5 --author pwebb --before "Sat Aug 30 2014"

5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage

 Figure 1: Spring commit messages from early days

 Figure 2: More recent Spring commit messages

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

52 hacker bits

The seven rules of a great git
commit message
Keep in mind: This has all been said before.

1. Separate subject from body with a blank line
2. Limit the subject line to 50 characters
3. Capitalize the subject line
4. Do not end the subject line with a period
5. Use the imperative mood in the subject line
6. Wrap the body at 72 characters
7. Use the body to explain what and why vs.

how

For example, see Figure 3.

1. Separate subject from body with a blank line

From the git commit manpage:

Though not required, it's a good idea to be-
gin the commit message with a single short
(less than 50 character) line summarizing
the change, followed by a blank line and
then a more thorough description. The text
up to the first blank line in a commit mes-
sage is treated as the commit title, and that
title is used throughout Git. For example, git-
format-patch(1) turns a commit into email,
and it uses the title on the Subject line and

the rest of the commit in the body.

Firstly, not every commit requires both a subject
and a body. Sometimes a single line is fine, espe-
cially when the change is so simple that no further
context is necessary. For example:

Fix typo in introduction to user guide

Nothing more need be said; if the reader
wonders what the typo was, she can simply take
a look at the change itself, i.e. use git show or git
diff or git log -p.

If you're committing something like this at the
command line, it's easy to use the -m switch to git
commit:

$ git commit -m"Fix typo in introduction to
user guide"

However, when a commit merits a bit of expla-
nation and context, you need to write a body. For
example, see Figure 4.

This is not so easy to commit this with the -m
switch. You really need a proper editor. If you do
not already have an editor set up for use with git
at the command line, read this section of Pro Git.

In any case, the separation of subject from
body pays off when browsing the log. Here's the

Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless
you omit the body entirely); various tools like `log`, `shortlog`
and `rebase` can get confused if you run the two together.

Explain the problem that this commit is solving. Focus on why you
are making this change as opposed to how (the code explains that).
Are there side effects or other unintuitive consequenses of this
change? Here's the place to explain them.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet, preceded
 by a single space, with blank lines in between, but conventions
 vary here

If you use an issue tracker, put references to them at the bottom,
like this:

Resolves: #123
See also: #456, #789

 Figure 3: Example of a great git commit message

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28WazTg

53hacker bits

full log entry in Figure 5.
And now git log --oneline, which prints out

just the subject line:

$ git log --oneline
42e769 Derezz the master control program

Or, git shortlog, which groups commits by
user, again showing just the subject line for con-
cision:

$ git shortlog
Kevin Flynn (1):
 Derezz the master control program

Alan Bradley (1):
 Introduce security program "Tron"

Ed Dillinger (3):
 Rename chess program to "MCP"
 Modify chess program
 Upgrade chess program

Walter Gibbs (1):
 Introduce protoype chess program

There are a number of other contexts in git
where the distinction between subject line and
body kicks in — but none of them work properly
without the blank line in between.

2. Limit the subject line to 50 characters

50 characters is not a hard limit, just a rule of
thumb. Keeping subject lines at this length en-
sures that they are readable, and forces the au-
thor to think for a moment about the most con-
cise way to explain what's going on.

Tip: If you're having a hard time summariz-

Derezz the master control program

MCP turned out to be evil and had become intent on world domination.
This commit throws Tron's disc into MCP (causing its deresolution)
and turns it back into a chess game.

 Figure 4: Some commit messages merit a body of explanation and context

$ git log
commit 42e769bdf4894310333942ffc5a15151222a87be
Author: Kevin Flynn <kevin@flynnsarcade.com>
Date: Fri Jan 01 00:00:00 1982 -0200

 Derezz the master control program

 MCP turned out to be evil and had become intent on world domination.
 This commit throws Tron's disc into MCP (causing its deresolution)
 and turns it back into a chess game.

 Figure 5: Full log entry

ing, you might be committing too many changes
at once. Strive for atomic commits (a topic for a
separate post).

GitHub's UI is fully aware of these conventions.
It will warn you if you go past the 50 character
limit:

And will truncate any subject line longer than 69
characters with an ellipsis:

So shoot for 50 characters, but consider 69 the
hard limit.

3. Capitalize the subject line

This is as simple as it sounds. Begin all subject
lines with a capital letter.
For example:

Accelerate to 88 miles per hour

Instead of:

accelerate to 88 miles per hour

4. Do not end the subject line with a period

Trailing punctuation is unnecessary in subject

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28Uz2XV

54 hacker bits

lines. Besides, space is precious when you're try-
ing to keep them to 50 chars or less.

Example:

Open the pod bay doors

Instead of:

Open the pod bay doors.

5. Use the imperative mood in the subject line

Imperative mood just means "spoken or written as
if giving a command or instruction". A few exam-
ples:

• Clean your room
• Close the door
• Take out the trash

Each of the seven rules you're reading about
right now are written in the imperative ("Wrap the
body at 72 characters", etc.).

The imperative can sound a little rude; that's
why we don't often use it. But it's perfect for git
commit subject lines. One reason for this is that
git itself uses the imperative whenever it creates a
commit on your behalf.

For example, the default message created
when using git merge reads:

Merge branch 'myfeature'

And when using git revert:

Revert "Add the thing with the stuff"

This reverts commit cc87791524aedd593cf-
f5a74532befe7ab69ce9d.

Or when clicking the "Merge" button on a GitHub
pull request:

Merge pull request #123 from someuser/some-
branch

So when you write your commit messages in
the imperative, you're following git's own built-in
conventions. For example:

• Refactor subsystem X for readability
• Update getting started documentation
• Remove deprecated methods
• Release version 1.0.0

Writing this way can be a little awkward at
first. We're more used to speaking in the indic-

ative mood, which is all about reporting facts.
That's why commit messages often end up read-
ing like this:

• Fixed bug with Y
• Changing behavior of X

And sometimes commit messages get written as a
description of their contents:

• More fixes for broken stuff
• Sweet new API methods

To remove any confusion, here's a simple rule to
get it right every time.

A properly formed git commit subject line
should always be able to complete the following
sentence:

• If applied, this commit will your subject line
here

For example:

• If applied, this commit will refactor subsystem
X for readability

• If applied, this commit will update getting
started documentation

• If applied, this commit will remove deprecated
methods

• If applied, this commit will release version
1.0.0

• If applied, this commit will merge pull request
#123 from user/branch

Notice how this doesn't work for the other non-im-
perative forms:

• If applied, this commit will fixed bug with Y

• If applied, this commit will changing behavior
of X

• If applied, this commit will more fixes for bro-
ken stuff

• If applied, this commit will sweet new API
methods

Remember: Use of the imperative is important
only in the subject line. You can relax this restric-
tion when you're writing the body.

6. Wrap the body at 72 characters

Git never wraps text automatically. When you
write the body of a commit message, you must
mind its right margin, and wrap text manually.

The recommendation is to do this at 72 char-
acters, so that git has plenty of room to indent

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607

55hacker bits

text while still keeping everything under 80 char-
acters overall.

A good text editor can help here. It's easy
to configure Vim, for example, to wrap text at
72 characters when you're writing a git commit.
Traditionally, however, IDEs have been terrible at
providing smart support for text wrapping in com-
mit messages (although in recent versions, IntelliJ
IDEA has finally gotten better about this).

7. Use the body to explain what and why vs.
how

This commit from Bitcoin Core is a great example
of explaining what changed and why. (see Figure
6)

Take a look at the full diff and just think how
much time the author is saving fellow and future
committers by taking the time to provide this con-
text here and now. If he didn't, it would probably
be lost forever.

In most cases, you can leave out details about
how a change has been made. Code is generally
self-explanatory in this regard (and if the code is
so complex that it needs to be explained in prose,
that's what source comments are for). Just focus
on making clear the reasons you made the change
in the first place — the way things worked before
the change (and what was wrong with that), the
way they work now, and why you decided to solve
it the way you did.

The future maintainer that thanks you may be
yourself!

Tips
Learn to love the command line. Leave the IDE
behind.

For as many reasons as there are git subcom-
mands, it's wise to embrace the command line.
Git is insanely powerful; IDEs are too, but each
in different ways. I use an IDE every day (IntelliJ
IDEA) and have used others extensively (Eclipse),
but I have never seen IDE integration for git that
could begin to match the ease and power of the
command line (once you know it).

Certain git-related IDE functions are invalu-
able, like calling git rm when you delete a file, and
doing the right stuff with git when you rename
one. Where everything falls apart is when you start
trying to commit, merge, rebase, or do sophisti-
cated history analysis through the IDE.

When it comes to wielding the full power of
git, it's command-line all the way.

Remember that whether you use Bash or Z
shell, there are tab completion scripts that take
much of the pain out of remembering the sub-
commands and switches.

Read Pro Git
The Pro Git book is available online for free, and
it's fantastic. Take advantage!

commit eb0b56b19017ab5c16c745e6da39c53126924ed6
Author: Pieter Wuille <pieter.wuille@gmail.com>
Date: Fri Aug 1 22:57:55 2014 +0200

 Simplify serialize.h's exception handling

 Remove the 'state' and 'exceptmask' from serialize.h's stream
 implementations, as well as related methods.

 As exceptmask always included 'failbit', and setstate was always
 called with bits = failbit, all it did was immediately raise an
 exception. Get rid of those variables, and replace the setstate
 with direct exception throwing (which also removes some dead
 code).

 As a result, good() is never reached after a failure (there are
 only 2 calls, one of which is in tests), and can just be replaced
 by !eof().

 fail(), clear(n) and exceptions() are just never called. Delete
 them.

 Figure 6: Commit from Bitcoin Core

Reprinted with permission of the original author. First appeared at chris.beams.io.

https://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201607
http://bit.ly/28TdeJd
http://bit.ly/28VDymo
http://bit.ly/28UxZqN
http://bit.ly/28Tdlo7
http://bit.ly/28Tdlo7
http://bit.ly/28ZNMFW
http://bit.ly/28Tdrfx
http://bit.ly/28YEdon

Ever wondered why a baker’s dozen refers to 13 of something?
Turns out for as long as there have been bakeries, there have
been deceitful bakers who cheated their customers by selling

lighter-than-usual loaves.
To combat this scourge of fraudulent baked goods, laws were

passed to protect consumers and anyone caught passing off a
lightweight loaf risked severe punishment — in ancient Babylon
that meant losing an arm. Over the centuries, bakers (armed with
uncanny marketing skills) began selling what they called a “bak-
er’s dozen” to highlight their trustworthiness. Their buy-12-get-1-
free sales pitch worked and the rest, as they say, is history.

* FOOD BIT is where we, enthusiasts of all edibles, sneak in a fun fact about food.

Baker's dozen

food bit *

HACKER BITS is the monthly magazine that gives you the hottest technology stories crowdsourced by the readers of Hacker News. We select
from the top voted stories for you and publish them in an easy-to-read magazine format.

Get HACKER BITS delivered to your inbox every month! For more, visit hackerbits.com.

http://news.ycombinator.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jul2016
https://hackerbits.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=jul2016

