
May 2016

hacker bits

Hello from Redmond!

Life as a tech professional ain’t easy… we know
because y'all wrote to tell us! Among the top
issues were keeping up with the onslaught of new
technology and maintaining work-life balance. But
have no fear, because we are here to help! :)

In this issue of Hacker Bits, we chat with John
Sonmez on how tech professionals can become
better at their jobs and lead rich, fulfilled lives.

Hint: The trick is learning to learn.

If you’ve gone on the job interview loop lately,
chances are you’ve caught a glimpse of the industry’s
fickle hiring practices. Dan Luu’s well-researched
piece reveals how some companies are hiring
irrationally by focusing only on particular candidates.

And as always, we have a line-up of all the essential
tech articles you should be reading, including the
lowdown on writing and organizing good code, and
what you can expect from state of the art JavaScript
in 2016.

So dig in and enjoy another meaty issue of Hacker
Bits!

Happy learning!

— Maureen and Ray
us@hackerbits.com

new bits

mailto:us@hackerbits.com

3hacker bits

content bits

06 State of the art JavaScript in 2016

14 Trackers

16 Kill your dependencies

26 Writing good code: How to reduce
the cognitive load of your code

32 Interview: How to become a better
programmer

36 Four strategies for organizing
code

43 Why I switched to Android after 7
years of iOS

48 On asking job candidates to code

52 I tried to virtually stalk Mark
Zuckerberg

May 2016

18 “We only hire the best” means we
only hire the trendiest

30 My biggest regret as a
programmer

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

4 hacker bits

Mike Perham
Mike is CEO of Contrib-
uted Systems, purvey-
ors of open source-
based software. Their
main product is Sidekiq
Enterprise, the finest
background job frame-
work money can buy.
It's artisanally-crafted in
Portland, OR.

Jacques Mattheij
Born in 1965, just in
time for a front-row-
seat for the PC revo-
lution, playing with
technology since I was
old enough to hold a
screwdriver, mechan-
ical stuff, electrical,
electronics and finally
software. Inventor of
live-streaming-video
on the web, currently
mostly active as interim
CEO/CTO and doing
technical due-diligence
for top-flight VCs.

Dan Luu
Dan has worked on
deep learning, CPU
verification/test/ucode/
RTL/etc, and other
performance critical
problems for Microsoft,
Google, and Centaur.
Check out his blog at
danluu.com.

Martin Sandin
Martin is a software
engineer who likes
programming lan-
guages, concurrency,
distributed systems,
and organizing stuff.
He has been program-
ming since he was a kid
and occasionally writes
about it to make sure
that at least he under-
stands his own idiosyn-
crasies.

Christian Mackeprang
Christian is an indepen-
dent web developer and
worked for two decades
in some of the largest
websites in Argenti-
na. Now he's focused
on giving something
back to the community
through his blog and
writing about software
craftsmanship.

Henrik Joreteg
Henrik is a progressive
Web App developer,
consultant, author, and
educator. He believes
the Web is the future of
mobile and IoT.

Francois Ward
Francois is a software
engineer and opinion-
ated JavaScript enthu-
siast. He specializes
in front end tooling,
infrastructure and is
obsessed with all things
related to unit test-
ing. Currently, he's on
Hubspot on the front
end as a service team in
Cambridge, MA.

Alex Kras
Alex is a Software Engi-
neer by day and Online
Marketer by night. You
can find his blog and
learn more about him
at alexkras.com.

contributor bits

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://danluu.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://chrismm.com/blog/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

5hacker bits

Ray Li
Curator

Ray is a software en-
gineer and data en-
thusiast who has been
blogging at rayli.net
for over a decade. He
loves to learn, teach
and grow. You’ll usu-
ally find him wrangling
data, programming and
lifehacking.

Maureen Ker
Editor

Maureen is an editor,
writer, enthusiastic
cook and prolific collec-
tor of useless kitchen
gadgets. She is the
author of 3 books and
100+ articles. Her work
has appeared in the
New York Daily News,
and various adult and
children’s publications.

Phil Calçado
Phil is the Director of
Software Engineering at
DigitalOcean. Previous-
ly, he was the Director
of Core Engineering at
SoundCloud, and his
team was responsible
for “keeping the trains
running” in our micro-
services architecture.
Before that he was the
Director of Product
Engineering at Sound-
Cloud, and before
joining SoundCloud he
was a Lead Consultant
for ThoughtWorks in
Australia and the UK.

Andrew Wulf
Andrew, “The Codist,”
is still delivering after
35 years as a program-
mer. He is currently
working in Florida after
spending most of his
life in Texas.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://rayli.net?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

6 hacker bits

State of the art
JavaScript in 2016

By FRANCOIS WARD

Programming

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

7hacker bits

So, you’re starting a brand
new JavaScript front-end
project or overhauling an

old one, and maybe you haven’t
kept up with the breakneck pace
of the ecosystem.

Or you did, but there are too
many things to choose from.
React, Flux, Angular, Aurelia,
Mocha, Jasmine, Babel, Type-
Script, Flow, oh my! By trying to
make things simpler, some fall
into a trap captured by one of
my favorite XKCD comics.

Well, the good news is the
ecosystem is starting to slow
down. Projects are merging. Best
practices are starting to become
clear. People are building on top
of existing stuff instead of build-
ing new frameworks.

As a starting point, here’s
my personal picks for most piec-
es of a modern web application.
Some choices are likely contro-
versial and I will only give basic
reasoning behind each choices.
Keep in mind they’re mostly
my opinion based on what I’m
seeing in the community and
personal experiences. Your mile-
age may vary.

Core library: React
The clear winner right now is
React.

•	 Components all the way
down makes your applica-
tion much easier to reason
about.

•	 The learning curve is very
flat. The important APIs
would fit on one page.

•	 JSX is awesome. You get all
the power of JavaScript and
its tooling when writing your
markup.

•	 It is the natural match for
Flux and Redux (more on
that later).The React com-
munity is amazing, and
produced many best-of-
breed tools such as Redux
(also more on that later).
Writing high quality data
flow is much easier in large
applications than dealing
with 2-way data binding (eg:
Knockout).

•	 If you ever need to do serv-
er-side rendering, React is
where it’s at.

There’s plenty of monolithic
frameworks like Ember, Aurelia

and Angular that promise to
take care of everything, but the
React ecosystem, while requiring
a few more decisions (that’s why
you’re reading this!), is much
more robust. Many of these
frameworks, such as Angular
2.0, are playing catch-up with
React.

Picking React isn’t a tech-
nology decision, it’s a business
decision.

Bonus points: once you start
working on your mobile apps,
you’ll be ready for it thanks to
React Native.

Application life cycle:
Redux
Now that we have our view and
component layer, we need some-
thing to manage state and the
lifecycle of our application. Re-
dux is also a clear winner here.

The clear winner right now is React.

Credit: www.xkcd.com

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://facebook.github.io/flux/
https://blog.formidable.com/using-react-is-a-business-decision-not-a-technology-choice-63c4641c5f7?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://blog.formidable.com/using-react-is-a-business-decision-not-a-technology-choice-63c4641c5f7?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://facebook.github.io/react-native/
https://github.com/reactjs/redux
https://github.com/reactjs/redux
http://www.xkcd.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

8 hacker bits

Alongside React, Facebook
presented a design pattern
for one-way data flow called
Flux. Flux largely delivered
on its promise of simplifying
state management, but it also
brought with it more questions,
such as how to store that state
and where to do Ajax requests.

To answer those questions,
countless frameworks were
built on top of the Flux pattern:
Fluxible, Reflux, Alt, Flummox,
Lux, Nuclear, Fluxxor and many,
many more.

One Flux-like implementa-
tion eventually caught the com-
munity’s attention, and for good
reasons: Redux.

In Redux, almost all of the
moving parts are pure functions.
There is one centralized store

and source of truth. Reducer
functions are responsible for
manipulating data that makes
up the store. Everything is much
clearer than in vanilla Flux.

More importantly, learning
Redux is a snap. Redux’s au-
thor, Dan Abramov is a fantastic
teacher, and his training videos
are fantastic. Watch the videos
and, become a Redux expert.
I’ve seen a team of engineers go
from nearly zero React expe-
rience to having a production-
ready application with top notch
code in a few weeks.

Redux’s ecosystem is as top

notch as Redux itself. From the
nearly magical devtool to the
amazing memoization utility
reselect, the Redux community
got your back.

One thing to be careful is
the natural instinct to try and
abstract away the Redux boiler-
plate. There are good reasons
behind all those pieces. Make
sure you tried it and understand
the “why” before trying to blind-
ly improve on it.

Language: ES6 with
Babel. No types (yet)
Avoid CoffeeScript. Most of its
better features are now in ES6, a
standard. Tooling (such as Cof-
feeLint) is very weak. Its commu-

nity is also rapidly declining.
ES6 is a standard. Most of it

is supported in the latest version
of major browsers. Babel is an
amazing “pluggable” ES6 com-
piler. Configure it with the right
presets for your target browsers
and you’re good to go.

What about types? Type-
Script and Flow both offer ways
to add static typing to JavaS-
cript, enhance tooling and catch
bugs without needing tests. With
that said, I suggest a wait and
see approach for now.

TypeScript tries too hard
to make JavaScript like C# or
Java, and lacks modern system

features such as algebraic data
types (and you really want those
if you’re going to do static
types!). It also doesn’t handle
nulls as well as Flow.

EDIT: It was brought up that
TypeScript does have things like
union types which cover a lot
of use cases. I only meant that
I think when it comes to type
system in UX-land, you go all the
way or not at all.

Flow can be much more pow-
erful, catching a wider variety
of bugs, but it can be hard to
set up. It’s also behind Babel in
terms of language features and
has poor Windows support.

I’ll say something contro-
versial: types are not nearly as
critical to front-end development
as some will have you believe

(the whole argument will have
to be in a future blog post). Wait
until the type systems are more
robust and stick to Babel for
now, keeping an eye on Flow as
it matures.

Linting & style: ESLint
with Airbnb
Another clear winner is ESLint.
With its React plugin and awe-
some ES6 support, one could
not ask for more of a linter.
JSLint is dated. ESlint does what
the JSHint + JSCS combo does in
a single tool.

Types are not nearly as critical
to front-end development as
some will have you believe.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://facebook.github.io/flux/
https://en.wikipedia.org/wiki/Pure_function
https://twitter.com/dan_abramov?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/gaearon/redux-devtools
https://github.com/reactjs/reselect
https://kangax.github.io/compat-table/es6/
http://www.typescriptlang.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.typescriptlang.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://flowtype.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
http://eslint.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.jslint.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://jshint.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://jscs.info/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

9hacker bits

You do have to configure
it with your style preferences.
I highly recommend Airbnb’s
styleguide, most of which can
be enforced via the ESlint airbnb
config. If your team is the kind
that will argue on code style,
just use this style guide as gos-
pel and the end-all and be-all of
arguments. It isn’t perfect, but
the value of having consistent
code is highly underestimated.

Once you’re comfortable
with it, I’d suggest enabling
even more rules. The more that
can be caught while typing (with
an ESlint plugin for your favorite
editor), the less decision fatigue
you’ll have and the more pro-
ductive you and your team will
be.

Dependency
management: It’s
all about NPM,
CommonJS and ES6
modules

This one is easy. Use NPM.
For everything. Forget about
Bower. Build tools such as
Browserify and Webpack brings
NPM’s power to the web. Ver-
sioning is handled easily and
you get most of the Node.js eco-
system. Handling of CSS is still
less than optimal though.

One thing you’ll want to
consider is how to handle build-
ing on your deployment server.
Unlike Ruby’s Bundler, NPM uses
wildcard versions, and packages
can change between the time

you finish coding and you start
deploying. Use a shrinkwrap file
to freeze your dependencies (I
recommend using Uber’s shrink-
wrap to get more consistent out-
put). Also consider hosting your
own private NPM server using
something like Sinopia.

Babel will compile ES6 mod-
ule syntax to CommonJS. You’ll
get a future proof syntax, and
the benefits of static code anal-
ysis, such as tree shaking when
using a build tool that supports
it (Webpack 2.0 or Rollup).

Build tool: Webpack
Unless you fancy adding hun-
dreds of script tags to your
pages, you’ll need a build tool to
bundle your dependencies. You
also need something to allow
NPM packages to work in brows-
ers. This is where Webpack
comes in.

A year ago you had a lot of
potential options here. Your
environment, such as Rails’
sprockets could do it. RequireJS,
Browserify and Webpack were
the JavaScript-based solutions.
Now, RollupJS promises to han-
dle ES6 modules optimally.

After trying them all, I highly
recommend Webpack:

•	 It is more opinionated yet
can be configured to handle
even the craziest scenarios.

•	 All main module formats
(AMD, CommonJS, globals)
are supported.

•	 It has features to fix broken
modules.

•	 It can handle CSS.

•	 It has the most comprehen-
sive cache busting/hashing
system (if you push your
stuff to CDNs).

•	 It supports hot reload out of
the box.

•	 It can load almost anything.

•	 It has an impressive list of
optimizations.

Webpack is also by far the
best for handling extremely
large SPA applications with
built-in code splitting and lazy
loading.

Be warned that the learning
curve is brutal! But once you get
it, you’ll be rewarded with the
best build system available.

But what about Gulp or
Grunt? Webpack is much better
at processing assets. They can
still be useful if you need to
run other kind of tasks though
(usually you won’t). For basic
tasks (such as running Webpack
or ESlint), I recommend simply
using NPM scripts.

Testing: Mocha + Chai
+ Sinon (but it’s not
that simple)
There are a LOT of options for
unit testing in JavaScript, and
you can’t go wrong with any
of them. If you have unit tests,
that’s already good!

Another clear winner is ESLint.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://www.npmjs.com/package/eslint-config-airbnb?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://www.npmjs.com/package/eslint-config-airbnb?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://bundler.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://docs.npmjs.com/cli/shrinkwrap?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/uber/npm-shrinkwrap
https://github.com/uber/npm-shrinkwrap
https://www.npmjs.com/package/sinopia?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.2ality.com/2014/09/es6-modules-final.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.2ality.com/2014/09/es6-modules-final.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://nodejs.org/docs/latest/api/modules.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.2ality.com/2015/12/webpack-tree-shaking.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://rollupjs.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/rails/sprockets
http://requirejs.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://browserify.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://rollupjs.org/
https://webpack.github.io/docs/list-of-loaders.html
https://github.com/webpack/docs/wiki/optimization
https://docs.npmjs.com/cli/run-script?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

10 hacker bits

Some choices are Jasmine,
Mocha, Tape and AVA and Jest.
I’m sure I’m forgetting some.
They all have something they do
better than the rest.

My criteria for a test frame-
work are as follow:

•	 It should work in the brows-
er for ease of debugging.

•	 It should be fast.
•	 It should easily handle asyn-

chronous tests.
•	 It should be easy to use from

the command line.
•	 It should let me use whatev-

er assertion and mock library
I want.

The first criteria knocks out
AVA (even though it looks awe-
some) and Jest (auto-mocking
isn’t nearly as nice as it sounds,
and is very slow anyway).

You can’t really go wrong
with Jasmine, Mocha or Tape.
I prefer Chai asserts because
of all the available plugins and
Sinon’s mocks to Jasmine’s
built-in construct, and Mocha’s
asynchronous test support is
superior (you don’t have to deal
with done callbacks).

Chai as Promised is amaz-
ing. I highly recommend using
Dirty Chai to avoid some head-
aches though. Webpack’s mo-
cha-loader lets you automatically
run tests as you code.

For React specific tooling,
look at Airbnb’s Enzyme and
Teaspoon (this isn’t the Rails-
based Teaspoon).

I really enjoyed Mocha’s fea-

tures and support. If you want
something more minimalist,
read this article about Tape.

Edit 3/11/2016: Since I
posted this, Facebook posted this
article on how they make Jest
scale. Probably a bit too com-
plex for most people, but if you
have the resources and don’t
care about running things in the
browser, you can probably make
it awesome.

Additionally, a bunch of
people thought I dismissed AVA
too quickly. Don’t get me wrong,
AVA is amazing. One of my
criteria, however, is full browser
support, so people can run them
straight from any browser (to
test cross browser support) and
debug them easily. If you don’t
care about that, you can use the
fantastic iron-node for debug-
ging. Coupled with the bundled
power asserts, it would easily
beat my Mocha setup.

Utility library: Lodash
is king, but look at
Ramda
JavaScript doesn’t have a strong
core of utilities like Java or .NET
does, so you’ll most likely want
to include one.

Lodash is by far the king and
contains the entire kitchen sink.
It is also one of the most per-
formant, with features such as
lazy evaluation. You don’t have
to include the whole thing if you
don’t want to, either: Lodash

lets you include only the func-
tions you use (pretty important
considering how large it has
become). As of 4.x, Lodash also
natively supports an optional
“functional” mode for the FP
geeks among us. See how to use
it here.

If you’re into functional pro-
gramming, however, take a look
at the fantastic Ramda. If you
decide to use it, you might still
need to include some Lodash
functions (Ramda is focused on
data manipulation and function-
al construct almost exclusively),
but you’ll get a lot of the power
of functional programming lan-
guages in a JavaScript-friendly
way.

Http requests: Just
use fetch!
Many React applications don’t
need jQuery at all anymore.
Unless you’re working on a
legacy application or have 3rd
party libraries that depend on it,
there’s no reason to include it.
That means you need to replace
$.ajax.

I like to keep it simple and
just use fetch. It’s promise
based, it’s built in Firefox and
Chrome, and it Just Works™.
For other browsers, you’ll need
to include a polyfill. I suggest
isomorphic-fetch, to ensure you
have all your bases covered,
including server-side.

There are other good librar-
ies such as Axios, but I haven’t

Lodash is by far the king and
contains the entire kitchen sink.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://jasmine.github.io/
https://mochajs.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/substack/tape
https://github.com/sindresorhus/ava?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://facebook.github.io/jest/
https://github.com/domenic/chai-as-promised?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/prodatakey/dirty-chai
https://github.com/webpack/mocha-loader
https://github.com/webpack/mocha-loader
https://github.com/airbnb/enzyme
https://github.com/jquense/teaspoon
https://medium.com/javascript-scene/why-i-use-tape-instead-of-mocha-so-should-you-6aa105d8eaf4
http://facebook.github.io/jest/blog/2016/03/11/javascript-unit-testing-performance.html
http://facebook.github.io/jest/blog/2016/03/11/javascript-unit-testing-performance.html
https://github.com/s-a/iron-node
http://filimanjaro.com/blog/2014/introducing-lazy-evaluation/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/lodash/lodash/wiki/FP-Guide
http://ramdajs.com/0.19.1/index.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://fetch.spec.whatwg.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/mzabriskie/axios?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

11hacker bits

needed much beyond fetch.
For more details about why

promises are important, see my
post on asynchronous program-
ming.

Styling: Consider CSS
modules
This is an area I feel is lagging
behind. Sass is the current go
to, and node-sass is a great way
to use it in your JavaScript proj-
ect. That said, I feel it’s missing
a lot to be a perfect solution.
Lack of reference imports (a way
to import just variables and mix-
ins from a file, without dupli-
cating selectors) and native URL
rewriting makes it harder than
needed to keep things lean and

clean in production. Node-sass
is a C library, and will have to
be kept in sync with your Node
version.

LESS does not suffer from
these issues, but has fallen out
of favor because it lacks many
of Sass’ features.

PostCSS is much more
promising, allowing you to kind
of “make your own CSS proces-
sor”. I’d recommend using it on

its own, or even in ADDITION
to your preferred processor for
things such as AutoPrefixer in-
stead of importing a big library
like Bourbon.

One thing worthy of atten-
tion though, are CSS modules.
CSS modules prevent the “cas-
cading” part of CSS, allowing
us to keep our dependencies
explicit, and prevent conflict.
You’ll never have to worry about
overriding classes by accident
or having to make ultra ex-
plicit names for your classes.
It works great with React, too.
One drawback: css-loader with
CSS modules enabled is REALLY
slow, so if you plan on having
hundreds of kilobytes of CSS,
you may want to avoid it until it
gets better.

If I were to start a large
project from scratch today, I’d
probably just use PostCSS along
with pre-compiled versions of
my favorite CSS libraries.

Regardless of what you
choose, you may want to look
at my post on CSS performance
with Webpack, especially if you
go with Sass.

Universal
(Isomorphic)
JavaScript: Make sure
you need it.
Universal or Isomorphic JavaS-
cript refers to JavaScript that can
be used on both the client and
the server. This is primarily used
to pre-render pages server-side
for performance and SEO pur-
pose. Thanks to React, what was
once only the realm of giants
such as Ebay or Facebook is now
within reach of most develop-
ment shops. It is still not “free”
though, adding significant com-
plexity and limiting your options
in term of libraries and tooling.

If you are building a B2C
(Business to Customer) website,

such as an e-commerce website,
you may not have a choice but
to go that route. For internal
web or B2B (Business to Busi-
ness) applications however, that
kind of initial performance may
not be required. Discuss with
your product manager to see if
the cost:benefit ratio is worth
the trouble.

If I were to start a large project
from scratch today, I’d probably
just use PostCSS along with pre-
compiled versions of my favorite
CSS libraries.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://eng.localytics.com/better-asynchronous-javascript/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://eng.localytics.com/better-asynchronous-javascript/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://lesscss.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/postcss/postcss
https://github.com/postcss/autoprefixer?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://bourbon.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://glenmaddern.com/articles/css-modules?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/webpack/css-loader?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://eng.localytics.com/faster-sass-builds-with-webpack/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://eng.localytics.com/faster-sass-builds-with-webpack/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

12 hacker bits

The API: There’s still
no true answer.
It seems everyone lately is
asking themselves what to do
for API. Everyone is jumping in
the RESTful API bandwagon, and
SOAP is a memory of the past.
There are various specifications
such as HATEOAS, JSON API,
HAL, GraphQL among others.

GraphQL gives a large
amount of power (and respon-
sibility) to the client, allowing it
to make nearly arbitrary queries.
Along with Relay, it handles
client state and caching for you.
Implementing the server-side
portion of GraphQL is difficult
and most of the documentation
is for Node though.

Netflix’s Falcor looks like it
will eventually give us a lot of
what GraphQL/Relay offers, with
simpler server requirements.
It is however only a developer
preview and not ready for prime
time.

All the well-known specifi-
cations have their quirks. Some
are overly complex. Some only
handle reads and don’t cover
update. Some stray significantly
from REST. Many people choose
to make their own, but then
have to solve all the design
problems on their own.

I don’t think any solution out
there is a slam dunk, but here’s
what I think your API should
have:

•	 It should be predictable.
Your endpoints should fol-
low consistent conventions.

•	 It should allow fetching mul-
tiple entities in one round
trip: needing 15 queries to
fetch everything you need
on page load will give poor
performance.

•	 Make sure you have a good
update story: many specifi-
cations only covers reads,
and you’ll need to update
stuff sometimes.

•	 It should be easy to debug:
looking at the Chrome in-
spector’s network tab should
easily let me see what hap-
pened.

•	 It should be easy to con-
sume: I should be able to
easily consume it with fetch,
or have a well-supported
client library (like Relay)

I haven’t found a solution that
covers all of the above. If there
is one, let me know.

Consider looking at Swagger
to document your API if you go
the standard RESTful path.

Desktop applications:
Electron
Electron is the foundation of the
great Atom editor and can be
used to make your own applica-
tions. At its core, it is a version
of Node that can open Chrome
windows to render a GUI, and
has access to the operating
system’s native APIs without a
browser’s typical security sand-
boxing.

You’ll be able to package
your application and distribute
it like any other desktop applica-
tion, complete with an installer
and auto-updates.

This is one of the easiest
ways to make an application
that can run on OSX, Windows
and Linux while reusing all the
tools listed above. It is well-doc-
umented and has a very active
community.

You may have heard of nw.js
(formerly node-webkit), which
has existed longer (and does
almost the same thing), but
Electron is now more stable and
is easier to use.

Take a look at this great
boilerplate to play around with
Electron, React and hot reload.
You’ll probably want to start
from scratch if you’re serious
about making your own applica-
tion so you’d understand how all
the pieces work.

Everyone is jumping in the
RESTful API bandwagon,
and SOAP is a memory of
the past.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/HATEOAS
http://jsonapi.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://stateless.co/hal_specification.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://facebook.github.io/react/blog/2015/05/01/graphql-introduction.html
https://facebook.github.io/relay/
https://github.com/Netflix/falcor
http://swagger.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/atom/electron
https://atom.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://nwjs.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/chentsulin/electron-react-boilerplate
https://github.com/chentsulin/electron-react-boilerplate

13hacker bits

Reprinted with permission of the original author. First appeared at medium.com/javascript-and-opinions.

Who to follow and
where to learn more?
This is a place where I’m falling
short, but on Twitter I follow the
following people:

•	 Dan Abramov, author of
Redux.

•	 Christopher Chedeau aka
Vjeux, a React developer at
Facebook very active in the
community.

•	 Jeff Morrison, one of the
main Flow contributors.

•	 Sebastian Markbåge, another
React developer at Facebook,
involved with the TC39.

•	 Pete Hunt. Originally from
Instagram and Facebook,
famous for his Rethinking
best practices talk, partly
responsible for putting React
on the map.

•	 React, because duh.
•	 The above are more are

aggregated in React Influenc-
ers.

While there’s many more worth
noting, those people retweet
almost anything worth looking
at, so they’re a good start.

Consider reading Pete Hunt’s
Learning React. Follow the order!

Dan Abramov published the

Getting started with Redux video
series. I can’t overstate how
amazing it is at teaching Redux.

The official Redux FAQ.
Dan also published his own

list, and it’s probably better than
mine.

Mark Erikson’s collection
of React/Redux links is an ever
growing gold mine.

Read Removing user inter-
face complexity, or why React is
awesome to get a walkthrough
of how React is designed and
why.

If you don’t need it,
don’t use it
The JavaScript ecosystem is
thriving and moving quickly, but
there’s finally an end at the light
of the tunnel. Best practices are
no longer changing constantly,
and it is becoming increasing-
ly clear which tools are worth
learning.

The most important thing to
remember is to keep it simple
and only use what you need.

Is your application only 2–3
screens? Then you don’t need a
router. Are you making a single
page? Then you don’t even need
Redux, just use React’s own

state. Are you making a simple
CRUD application? You don’t
need Relay. Are you learning
ES6? You don’t need Async/
Await or Decorators. Are you
just starting to learn React?
You don’t need Hot reload and

server rendering. Are you start-
ing out with Webpack? You don’t
need code splitting and multiple
chunks. Are you starting with
Redux? You don’t need Re-
dux-Form or Redux-Sagas.

Keep it simple, one thing at
a time, and you’ll wonder why
people ever complained about
JavaScript fatigue.

Did I miss anything?
And there you have it, my view
of the current state of JavaScript.
Do you think I forgot an im-
portant category? Do you think
I’m objectively wrong on one of
these choices? Do you recom-
mend something else? Let me
know! 

The most important thing to
remember is to keep it simple
and only use what you need.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://medium.com/javascript-and-opinions
https://github.com/gaearon?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://twitter.com/Vjeux?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/jeffmo
https://twitter.com/sebmarkbage
https://twitter.com/floydophone
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://twitter.com/reactjs
https://twitter.com/oguzbilgic/lists/react-influencers
https://twitter.com/oguzbilgic/lists/react-influencers
https://github.com/petehunt/react-howto
https://egghead.io/series/getting-started-with-redux?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://redux.js.org/docs/FAQ.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://medium.com/@dan_abramov/my-react-list-862227952a8c#.740o0wzee
https://medium.com/@dan_abramov/my-react-list-862227952a8c#.740o0wzee
https://github.com/markerikson/react-redux-links
http://jlongster.com/Removing-User-Interface-Complexity,-or-Why-React-is-Awesome?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://jlongster.com/Removing-User-Interface-Complexity,-or-Why-React-is-Awesome?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://jlongster.com/Removing-User-Interface-Complexity,-or-Why-React-is-Awesome?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

14 hacker bits

Trackers By JACQUES MATTHEIJ

Interesting

A couple of weeks ago I
went to the local shop-
ping centre looking for a

thermometer. After entering one
store and upon leaving without
buying anything, a tracker was
assigned to me. I didn’t think
much of it at first, but he fol-
lowed me dutifully around the
shopping centre, and took care-
ful note of how I walked.

Whenever I visited a store,
he made a note in his little black
book (he kept calling it my pro-
file, and he didn’t want to show
me what was in it so I assume
it was actually his, rather than
mine).

Each of those stores of
course assigned trackers to me
as well and soon enough I was
followed by my own personal
veritable posse of nondescript
guys with little black books mak-
ing notes.

After doing my shopping I
went home. To my surprise, they
expected to come into the house
with me and stay there, which I
objected.

That didn’t stop them.

Instead of walking in with me
through the front door, they
forced open the back door and
installed themselves at my table.
One of them had found my
mobile phone and was going
through my list of contacts,
adding the names and the tele-
phone numbers of the people
that I knew to a thing they called
a ‘social graph.’

It mattered a lot to them, ap-
parently, and even though I took
the phone away from him and
made him wipe the copy that
he’d made, I realized that if they
did the same to my friends (who
likely would not take as forceful
a stance against the trackers as
I did), they’d already have most
of that information anyway and
there was nothing I could do
about it.

Every visitor to my house
was asked a whole pile of per-
sonal questions, and if they
didn’t answer, their photographs
would be used to complete the
gaps in their profiles and mine.

During the night they’d been
up to something because the

next morning my newspaper
had been cut up, with all kinds
of blank windows between the
articles. They assured me that
all of this was entirely legal, and
that may be so, but it left me
with a weird feeling that these
anonymous entities would know
more about me than my own
mother does.

Upset about this, I decid-
ed to read my newspaper in
the park, where I expected at
least a little bit more privacy.
I probably should have known
better. The trackers of course
followed me to the park and set
up an impromptu auction of the
space created by the holes in my
paper.

Every time I would open a
page the space on that page
would come up for auction, and
the tracker that won the auction
would quickly glue an advertise-
ment that he’d brought with him
over the gap in the page. Mys-
teriously quite a few of the ads
were for thermometers, even
though I no longer had a need
for one (having found one in

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://en.wikipedia.org/wiki/HTTP_cookie
http://www.nytimes.com/2012/02/06/technology/06iht-rawdata06.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nytimes.com/2012/02/06/technology/06iht-rawdata06.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.wired.com/insights/2014/02/owns-data/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Data_Protection_Directive
https://paulsinternetsecurityblog.wordpress.com/2012/06/30/tracking-cookies-how-many-does-your-computer-have/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.kaushik.net/avinash/web-analytics-visitor-tracking-cookies/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.kaushik.net/avinash/web-analytics-visitor-tracking-cookies/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.kaushik.net/avinash/web-analytics-visitor-tracking-cookies/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Web_widget
http://www.computerworld.com/article/2509878/data-privacy/smartphone-apps--is-your-privacy-protected-.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Social_graph
http://www.pcworld.com/article/229742/Why_Facebooks_Facial_Recognition_is_Creepy.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.pcworld.com/article/229742/Why_Facebooks_Facial_Recognition_is_Creepy.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.digitaltrends.com/computing/how-do-advertisers-track-you-online-we-found-out/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.digitaltrends.com/computing/how-do-advertisers-track-you-online-we-found-out/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.digitaltrends.com/computing/how-do-advertisers-track-you-online-we-found-out/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Real-time_bidding
https://en.wikipedia.org/wiki/Behavioral_retargeting

15hacker bits

particular restaurant chain, an
ad popped up overlaying my
mobile screen indicating that
the restaurant had my favorite
dish on sale that day. (How did
they figure out my favorite dish
anyway? Was it because I had
searched for the recipe a few
weeks ago?).

I resisted the temptation
and decided to go anywhere but
there. (Even if that meant the
trackers could still influence me.
At least they’d have to add an
inversion to all their little plans).

Finally after a couple of
weeks of this I decided I’d had
enough. The final straw was
when a tracker popped up in
my bed, between me and my
wife when I was looking for the
shortest route to my meeting
the next morning. Really, that
did it.

The advertising industry did
not have the right to become
involved in my private life to this
degree, to track my every move,
and to keep detailed information
of my daily whereabouts and in-
teractions in the real world. And
the last place I expected them to
track me to was in the privacy of
my bedroom.

I hired a couple of ‘tough
guys’, bouncers, really. Their
assignments were simple: keep
these advertising types out of
my life, hurt them if they have
to. I’ve really had enough of it.

Another side benefit of this
was that the burglars and other
shady types that used the infor-
mation gathered by the track-
ers to target me for an entirely
different kind of operation were
also shut out.

After the first couple of
run-ins between the bouncers
and trackers, the trackers got
the message and mostly left me

alone. Some still tried but for
the most part it seems I was at
least a little bit safer from prying
eyes.

Even more powerful methods
of getting rid of trackers exist
and there are many variations
to choose from, with different
functionality. For some victims
however, even bouncers were
not enough to regain their much
deserved privacy.

Some of the bouncers were
trying to be a little bit too clever
for my taste: they actually took
the place of the trackers they
blocked. Serves me right for
hiring tough guys, I thought,
so I’ve been more careful since
then and now check out care-
fully which party gets to place
themselves between me and the
trackers.

Even with the tough guys
in tow there were still ways in
which I could be tracked. But at
least that seemed to, for now,
be beyond the pale for most re-
spectable businesses employing
trackers.

Some venues did not allow
me to enter with my bouncers
in tow, so I stopped visiting. It’s
not that I minded their adver-
tising to me, but that I mind-
ed being followed, and if they
wouldn’t change their ways then
I would have to change mine.

All of this is really too bad,
since some of the stores de-
pended to a certain extent on
my patronage. But I guess there
are not enough people that
are concerned about privacy
to make a difference. Or are
there? 

the drawer in the bathroom that
same evening).

The guy the newspaper
hired to do the auctions thought
this was a-ok, and encouraged
the trackers to bid even higher
based on all the stuff that he’d
told them about me.

The information they used
included all the stuff in ‘my’
profile (some of which came as
a surprise to me, for instance,
he knew roughly what I earned,
knew the fact that I had kids and
a whole raft of other details that
I did not consider to be any of
his business, and even today I
have no idea how he got that in-
formation) as well as our current
location on that park bench.

Some of the more enter-
prising trackers took down the
stuff the newspaper guy told
them about me in their own
little black books and soon were
auctioning that information off
to other trackers and to any-
body that was willing to part
with some money. It became
quite a crowd (a mini WallStreet,
actually) around my chosen
park bench and the atmosphere
turned bad, to the point where
I did not feel as if the park had
anything to offer any longer.

I figured maybe I’d go for
some lunch at a nearby restau-
rant. The trackers had long since
figured out my mobile phone
number. They combined a little
embedded code in a game that
I’d once installed (and played
twice, although it wasn’t a very
good game). It kept a continu-
ous read-out of my phone and
all its sensors, and phoned
home to the mother ship when-
ever it could.

I probably shouldn’t have
been surprised when just as I
was passing by the door of one

Reprinted with permission of the original author. First appeared at jacquesmattheij.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://mobilemarketingmagazine.com/xad-launches-marketplace-self-service-location-targeting-solution/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://mobilemarketingmagazine.com/xad-launches-marketplace-self-service-location-targeting-solution/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Ad_blocking
https://en.wikipedia.org/wiki/Ad_blocking
http://www.networkworld.com/article/3021113/security/forbes-malware-ad-blocker-advertisements.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.networkworld.com/article/3021113/security/forbes-malware-ad-blocker-advertisements.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://nakedsecurity.sophos.com/2016/01/15/malvertising-why-fighting-adblockers-gets-users-backs-up/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://nakedsecurity.sophos.com/2016/01/15/malvertising-why-fighting-adblockers-gets-users-backs-up/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.metiix.com/blockade?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.metiix.com/blockade?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://pi-hole.net/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/quidsup/notrack
https://github.com/gorhill/uMatrix?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/jakeogh/dnsgate
https://gaenserich.github.io/hostsblock/
http://lifehacker.com/ad-blocking-extension-ghostery-actually-sells-data-to-a-514417864?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://lifehacker.com/ad-blocking-extension-ghostery-actually-sells-data-to-a-514417864?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://lifehacker.com/ad-blocking-extension-ghostery-actually-sells-data-to-a-514417864?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/gorhill/uBlock/releases
https://panopticlick.eff.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://panopticlick.eff.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://digiday.com/publishers/forbes-ad-blocking/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://gilc.org/privacy/survey/intro.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.schober.de/en/data/business-lists.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.schober.de/en/data/business-lists.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.salon.com/2014/08/29/its_not_just_facebook_anymore_in_the_future_your_data_is_always_for_sale/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.programmableweb.com/api/xad?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.programmableweb.com/api/xad?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://jacquesmattheij.com/trackers?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

16 hacker bits

for those gems to pull in other
gems transitively, leading to
Rails apps which “download the
Internet” and have hundreds of
dependencies.

When you publish a Ruby-
gem, every one of your depen-
dencies transitively becomes a
dependency for any app using
your gem. This multiplies the
impact of bugs in those gems.

The curious case of
mime-types
The mime-types gem recently
optimized its memory usage and
saved megabytes of RAM. Liter-
ally every Rails app in existence
can benefit from this optimiza-
tion because Rails depends on
the mime-types gem transitively:
rails -> actionmailer -> mail ->

mime-types.
In other words, this gem

wasn’t used by your app. It
wasn’t used by Rails directly.
It wasn’t used by ActionMailer
directly. It was used deep in
the bowels of the ActionMailer
implementation and it was using
far too much memory. Every
single Rails app in existence was
using 10MB too much due to
this issue.

App developers,
listen up!
Every dependency in your appli-

Programming

Kill your dependencies
By MIKE PERHAM

This post talks about Ruby
but it’s true of every lan-
guage community: Python,

JavaScript, Java, etc. The scourge
of dependencies spares no one.

This is a dependency visu-
alization of every Rails app I’ve
ever used. See figure below for
a dependency visualization of
every Rails app.

cation has the potential to bloat
your app, to destabilize your
app, to inject odd behavior via
monkeypatching or buggy native
code. When you are considering
adding a dependency to your
Rails app, it’s a good idea to do
a quick sanity check, in order of
preference:

1.	 Do I really need this at all?
Kill it.

2.	 Can I implement the re-
quired minimal functional-
ity myself? Own it.

If you need a gem:
1.	 Does the gem have a

native extension? Look for
pure ruby alternatives.

2.	 Does the gem transitively
pull in a lot of other gems?
Look for simpler alterna-
tives.

Gems with native extensions
can destabilize your system;
they can be the source of
mysterious bugs and crashes.
Avoid gems which pull in more
dependencies than their value
warrants. Example of a bad gem:
the fog gem which pulls in 39
gems, more dependencies than
rails itself and most of which are
unnecessary.

Lastly, make sure you only
load the gem when necessary.
Use Bundler’s group support
to disable test gems when not
testing:

Does any of this sound familiar?

•	 Gemfile with 100s of entries.
•	 Test gems loading in pro-

duction.
•	 Each Rails process takes

100s of megabytes of RAM.

The Rubygems system is
commendable for how easy it
makes packaging up Ruby for
others to reuse. But that very
ease means it’s also quite easy

 Rails app dependency
visualization

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://github.com/mime-types/ruby-mime-types/issues/94
https://github.com/mime-types/ruby-mime-types/issues/94

17hacker bits

group :test do

 gem 'rspec'

 gem 'timecop'

 # etc

end

Gem developers,
listen up!
Part of your job as a library
author is to treat your user and
their application with respect.
You should make an effort to
minimize your own dependen-
cies so they don’t load unneces-
sary code or cause issues in the
user’s application.

You control your own code
but you don’t control your de-
pendencies. Any bug in a depen-
dency of yours becomes a bug
that causes stress for your user
and their application.

As a gem developer, for each
of your gem dependencies do
you:

•	 Know how much memory
each takes?

•	 Know how long each takes to
require?

•	 Know whether it performs
any monkeypatching outside
of its own module?

Sidekiq, with all of its func-
tionality, has only 3 runtime
dependencies: concurrent-ruby,
connection_pool and redis.

Die json, die (German
for “The json, the”)
So many gems declare a depen-
dency on json, oj, multi_json,
or yajl-ruby. There are so many
ossified layers of cruft around
JSON processing that only one
course of action makes sense:

remove it all. JSON has been
in the stdlib since 1.9 and you
don’t need to declare any depen-
dencies at all. Just require 'json'
and let Ruby deal with it.

Rails did it, so can you!

Why choose an HTTP
client when you can
have them all?
Every Rails app pulls in a half
dozen different HTTP clients:
faraday, rest-client, httparty, ex-
con, typhoeus, curb, etc. This is
because various gems use them
internally.

A Rubygem should never use
anything but Net::HTTP internal-
ly! Learn the Net:HTTP API, kill
those dependencies and stop
forcing extra HTTP client gems
on your users.

Let’s say you want to offer
an optimized version using curb:
ok, but make it optional. Allow
the application developer to opt
into using curb but net/http
should always be the default.

Optimizing Rails 5.0
For the last few weeks, I’ve been
working (in tandem with several
other developers, hi @_mat-
thewd, @applerebel!) on min-
imizing gem dependencies in
Rails 5.0.

•	 Rails 4.2.5 required 34
gems.

•	 Rails 5.0b1 required 55
gems.

•	 Rails 5.0b2 required 39
gems.

I expect Rails 5.0 to require
37 gems or less. So far we’ve re-
moved Celluloid, EventMachine,

thread_safe, and json.
Unfortunately there’s no

more low-hanging fruit. I’d love
to drop Nokogiri, it’s such a
huge dependency with a massive
native extension component,
but there are some non-trivial
dependencies on it. Oga is a
nice, simpler alternative. If you
ship a gem which depends on
Nokogiri, consider making it op-
tional and defaulting to REXML (I
know, but at least it’s in stdlib)
or Oga instead.

Be part of the
solution
I can help with Rails 5.0 but I
can’t fix every gem. If you are a
gem developer, audit your own
dependencies and remove as
many as you can. If you’re an
app developer, take a look in
your Gemfile and see if you can
find a gem or two to remove.
Simplify, simplify, simplify.

As an example, I think it’s
possible for the Stripe gem to
remove both of its runtime de-
pendencies.

Rules to remember
Some software engineering
rules:

•	 No code runs faster than no
code.

•	 No code has fewer bugs than
no code.

•	 No code uses less memory
than no code.

•	 No code is easier to under-
stand than no code.

Kill those dependencies. Your
gems and apps will be better for
it. 

Reprinted with permission of the original author and mikeperham.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://github.com/rails/rails/pull/23453
https://github.com/flavorjones/loofah/issues/100
https://github.com/flavorjones/loofah/issues/100
https://github.com/YorickPeterse/oga
https://github.com/stripe/stripe-ruby/blob/master/stripe.gemspec#L16
http://www.mikeperham.com/2016/02/09/kill-your-dependencies/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

18 hacker bits

By DAN LUU

Opinion

“We only hire the best”
means we only hire
the trendiest

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

19hacker bits

An acquaintance of mine,
let’s call him Mike, is look-
ing for work after getting

laid off from a contract role at
Microsoft, which has happened
to a lot of people I know. Like
me, Mike has 11 years in the
industry. Unlike me, he doesn’t
know a lot of folks at trendy
companies, so I passed his ré-
sumé around to some engineers
I know at companies that are

desperately hiring. My engineer-
ing friends thought Mike’s re-
sume was fine, but most recruit-
ers rejected him in the resume
screening phase.

When I asked why he was
getting rejected, the typical re-
sponse I got was:

1.	 Tech experience is in irrel-
evant tech.

2.	 “Experience is too random,
with payments, mobile,
data analytics, and UX.”

3.	 Contractors are generally
not the strongest techni-
cally.

This response is something
from a recruiter that was relayed
to me through an engineer; the
engineer was incredulous at the
response from the recruiter. Just

so we have a name, let’s call this
company TrendCo. It’s one of
the thousands of companies that
claims to have world class en-
gineers, hire only the best, etc.
This is one company in particu-
lar, but it’s representative of a
large class of companies and the
responses Mike has gotten.

Anyway, (1) is code for
“Mike’s a .NET dev, and we don’t
like people with Windows expe-

rience.”
I’m familiar with TrendCo’s

tech stack, which multiple em-
ployees have told me is “a tire
fire.” Their core systems top out
under 1k QPS, which has caused
them to go down under load.
Mike has worked on systems
that can handle multiple orders
of magnitude more load, but
his experience is, apparently,
irrelevant.

(2) is hard to make sense
of. I’ve interviewed at TrendCo
and one of the selling points is
that it’s a startup where you get
to do a lot of different things.
TrendCo almost exclusively
hires generalists but Mike is, ap-
parently, too general for them.

(3), combined with (1), gets
at what TrendCo’s real com-
plaint with Mike is. He’s not

their type. TrendCo’s median
employee is a recent graduate
from one of maybe ten “top”
schools with 0-2 years of expe-
rience. They have a few experi-
enced hires, but not many, and
most of their experienced hires
have something trendy on their
resume, not a boring old compa-
ny like Microsoft.

Whether or not you think
there’s anything wrong with hav-

ing a type and rejecting people
who aren’t your type, as Thom-
as Ptacek has observed, if your
type is the same type everyone
else is competing for, “you are
competing for talent with the
wealthiest (or most overfunded)
tech companies in the market.”

If you look at new grad
hiring data, it looks like FB is
offering people with zero expe-
rience greater than $100k/ sal-
ary, $100k signing bonus, and
$150k in RSUs, for an amortized
total comp greater than $160k/
yr, including $240k in the first
year.

Google’s package has great-
er than $100k salary, a vari-
able signing bonus in the $10k
range, and $187k in RSUs. That
comes in a bit lower than FB,
but it’s much higher than most

My engineering friends thought
Mike’s resume was fine, but most
recruiters rejected him in the
resume screening phase.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://news.ycombinator.com/item?id=11290662
https://news.ycombinator.com/item?id=11290662
https://docs.google.com/spreadsheets/u/1/d/1UnLz40Our1Ids-O0sz26uPNCF6cQjwosrZQY4VLdflU/htmlview?pli=1&sle=true
https://docs.google.com/spreadsheets/u/1/d/1UnLz40Our1Ids-O0sz26uPNCF6cQjwosrZQY4VLdflU/htmlview?pli=1&sle=true

20 hacker bits

companies that claim to only
hire the best are willing to pay
for a new grad. Keep in mind
that compensation can go much
higher for contested candidates,
and that compensation for expe-
rienced candidates is probably
higher than you expect if you’re
not a hiring manager who’s seen
what competitive offers look like
today.

By going after people with
the most sought after qualifi-
cations, TrendCo has narrowed
their options down to either
paying out the nose for employ-
ees, or offering non-competitive
compensation packages.

TrendCo has chosen the
latter option, which partially
explains why they have, propor-
tionally, so few senior devs – the
compensation delta increases
as you get more senior, and you
have to make a really compelling
pitch to someone to get them
to choose TrendCo when you’re
offering $150k/yr less than the
competition. And as people get
more experience, they’re less
likely to believe the part of the
pitch that explains how much
the stock options are worth.

Just to be clear, I don’t have
anything against people with

trendy backgrounds. I know a lot
of these people who have impec-
cable interviewing skills and got
5-10 strong offers the last time
they looked for work.

I’ve worked with someone
like that: he was just out of
school, his total comp package
was north of $200k/year, and he
was worth every penny.

But think about that for a
minute. He had strong offers
from six different companies, of
which he was going to accept at
most one. Including lunch and
phone screens, the companies
put in an average of eight hours
apiece interviewing him.

And because they wanted
to hire him so much, the com-
panies that were really serious
spent an average of another five
hours apiece of engineer time
trying to convince him to take
their offer.

Because these companies
had, on average, a one-sixth
chance of hiring this person,
they have to spend at least an
expected (8+5) * 6 = 78 hours of
engineer time1.

People with great back-
grounds are, on average, pretty
great, but they’re really hard
to hire. It’s much easier to hire

people who are underrated,
especially if you’re not paying
market rates.

I’ve seen this hyperfocus on
hiring people with trendy back-
grounds from both sides of the
table, and it’s ridiculous from
both sides.

On the referring side of hir-
ing, I tried to get a startup I was
at to hire the most interesting
and creative programmer I’ve
ever met, who was tragically un-
deremployed for years because
of his low GPA in college.

We declined to hire him
and I was told that his low GPA
meant that he couldn’t be very
smart. Years later, Google took
a chance on him and he’s been
killing it since then. He actually
convinced me to join Google,
and at Google, I tried to hire one
of the most productive program-
mers I know, who was promptly
rejected by a recruiter for not
being technical enough.

On the candidate side of hir-
ing, I’ve experienced both being
in demand and being almost
un-hireable. Because I did my
undergrad at Wisconsin, which
is one of the 25 schools that
claims to be a top 10 CS/engi-
neering school, I had recruiters

It’s much easier to hire people who
are underrated, especially if you’re
not paying market rates.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://danluu.com/startup-tradeoffs/#fn:C?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://danluu.com/startup-tradeoffs/#fn:C?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
http://danluu.com/tech-discrimination/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/tech-discrimination/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/tech-discrimination/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/tech-discrimination/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/tech-discrimination/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

21hacker bits

beating down my door when I
graduated.

But that’s silly – that I at-
tended Wisconsin wasn’t any-
thing about me; I just happened
to grow up in the state of Wis-
consin. If I grew up in Utah, I
probably would have ended up
going to school at Utah. When
I’ve compared notes with folks
who attended schools like Utah
and Boise State, their education
is basically the same as mine.

Wisconsin’s rank as an
engineering school comes from
having professors who do great
research which is, at best, weak-
ly correlated to effectiveness at
actually teaching undergrads.
Despite getting the same engi-
neering education you could get
at hundreds of other schools, I
had a very easy time getting in-
terviews and finding a great job.

I spent 7.5 years in that
great job, at Centaur. Centaur
has a pretty strong reputation
among hardware companies
in Austin who’ve been around
for a while, and I had an easy
time shopping for local jobs
at hardware companies. But I
don’t know of any software folks
who’ve heard of Centaur, and as
a result I couldn’t get an inter-
view at most software compa-
nies. There were even a couple
of cases where I had really

strong internal referrals and the
recruiters still didn’t want to talk
to me, which I found funny and
my friends found frustrating.

When I could get interviews,
they often went poorly. A typical
rejection reason was something
like “we process millions of
transactions per day here and
we really need someone with
more relevant experience who
can handle these things without
ramping up.”

And then Google took a
chance on me and I was the
second person on a project to
get serious about deep learning
performance, which was a 20%-
time project until just before I
joined.

We built the fastest deep
learning system in the world.
From what I hear, they’re now
on the Nth generation of that
project, but even the first gen-
eration thing we built has better
per-node performance and
performance per dollar than any
other production system I know
of today, years later (excluding
follow-ons to that project, of
course).

While I was at Google I had
recruiters pinging me about job
opportunities all the time. And
now that I’m at boring old Micro-
soft, I don’t get nearly as many
recruiters reaching out to me.

I’ve been considering looking for
work2 and I wonder how trendy
I’ll be if I do. Experience in
irrelevant tech? Check! Random
experience? Check! Contractor?
Well, no. But two out of three
ain’t bad.

My point here isn’t anything
about me. It’s that here’s this
person3 who has wildly different
levels of attractiveness to em-
ployers at various times, mostly
due to superficial factors that
don’t have much to do with ac-
tual productivity.

This is a really common
story among people who end up
at Google. If you hired them be-
fore they worked at Google, you
might have gotten a great deal!
But no one (except Google) was
willing to take that chance.

There’s something to be said
for paying more to get a known
quantity, but a company like
TrendCo that isn’t willing to do
that cripples its hiring pipeline
by only going after people with
trendy resumes.

I don’t mean to pick on start-
ups like TrendCo in particular.
Boring old companies have their
version of what a trendy back-
ground is, too.

A friend of mine who’s des-
perate to hire can’t do anything
with some of the resumes I pass
his way because his group isn’t

And now that I’m at boring old Microsoft,
I don’t get nearly as many recruiters
reaching out to me.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://danluu.com/teach-debugging/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/teach-debugging/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

22 hacker bits

allowed to hire anyone without a
degree. Another person I know
is in a similar situation because
his group won’t talk to people
who aren’t already employed.

Not only are these decisions
non-optimal for companies,
they create a path dependence
in employment outcomes that
causes individual good (or bad)
events to follow people around
for decades. You can see similar
effects in the literature on career
earnings in a variety of fields.4

Thomas Ptacek has this
great line about how “we inter-
view people whose only prior
work experience is “Line of
Business .NET Developer,” and
they end up showing us how to
write exploits for elliptic curve
partial nonce bias attacks that
involve Fourier transforms and
BKZ lattice reduction steps that
take 6 hours to run.”

If you work at a company
that doesn’t reject people out
of hand for not being trendy,
you’ll hear lots of stories like
this. Some of the best peo-
ple I’ve worked with went to
schools you’ve never heard of
and worked at companies you’ve
never heard of until they ended
up at Google. Some are still at
companies you’ve never heard
of.

If you read Zach Holman,
you may recall that when he
said that he was fired, someone
responded with “If an employer
has decided to fire you, then
you’ve not only failed at your
job, you’ve failed as a human
being.” A lot of people treat
employment status and creden-
tials as measures of the inherent
worth of individuals. But a large
component of these markers of
success, not to mention success
itself, is luck.

Solutions?
I can understand why this
happens. At an individual level,
we’re prone to the fundamental
attribution error. At an organiza-
tional level, fast growing orga-
nizations burn a large fraction
of their time on interviews, and
the obvious way to cut down
on time spent interviewing is
to only interview people with
“good” qualifications. Unfortu-
nately, that’s counterproductive
when you’re chasing after the
same tiny pool of people as ev-
eryone else.

Here are the beginnings of
some ideas. I’m open to better
suggestions!

Moneyball
Billy Beane and Paul Depodesta
took the Oakland A’s, a baseball
franchise with nowhere near the
budget of top teams, and creat-
ed what was arguably the best
team in baseball by finding and
“hiring” players who were statis-
tically underrated for their price.

The thing I find really
amazing about this is that they
publically talked about doing
this, and then Michael Lewis
wrote a book, titled Moneyball,
about them doing this. Despite
the publicity, it took years for
enough competitors to catch on
that the A’s strategy stopped
giving them a very large edge.

You can see the exact same
thing in software hiring. Thomas
Ptacek has been talking about
how they hired unusually effec-
tive people at Matasano for at
least half a decade, maybe more.

Google bigwigs regularly
talk about the hiring data they
have and what hasn’t worked.
I believe they talked about
how focusing on top schools
wasn’t effective and didn’t turn
up employees that have better
performance years ago, but
that doesn’t stop TrendCo from
focusing hiring efforts on top
schools.

A large component of these
markers of success, not to
mention success itself, is luck.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://news.ycombinator.com/item?id=7260087
https://news.ycombinator.com/item?id=7260087
https://zachholman.com/talk/firing-people?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Fundamental_attribution_error
https://en.wikipedia.org/wiki/Fundamental_attribution_error
http://www.amazon.com/Moneyball-Art-Winning-Unfair-Game/dp/0393324818/

23hacker bits

Training/mentorship
You see a lot of talk about
Moneyball, but for some reason
people are less excited about…
trainingball? Practiceball? What-
ever you want to call taking
people who aren’t “the best” and
teaching them how to be “the
best”.

This is another one where
it’s easy to see the impact
through the lens of sports,
because there is so much good
performance data. Since it’s
basketball season, if we look at
college basketball, for example,

we can identify a handful of
programs that regularly take un-
remarkable inputs and produce
good outputs. And that’s against
a field of competitors where
every team is expected to coach
and train their players.

When it comes to tech
companies, most of the compe-
tition isn’t even trying. At the
median large company, you get
a couple days of “orientation”,
which is mostly legal mumbo
jumbo and paperwork, and the
occasional “training,” which is
usually a set of videos and a set

of multiple-choice questions that
are offered up for compliance
reasons, not to teach anyone
anything. And you’ll be assigned
a mentor who, more likely than
not, won’t provide any actual
mentorship. Startups tend to be
even worse! It’s not hard to do
better than that.

Considering how much mon-
ey companies spend on hiring
and retaining “the best,” you’d
expect them to spend at least
a (non-zero) fraction on train-
ing. It’s also quite strange that
companies don’t focus more on

training and mentorship when
trying to recruit.

Specific things I’ve learned
in specific roles have been tre-
mendously valuable to me, but
it’s almost always either been a
happy accident, or something I
went out of my way to do. Most
companies don’t focus on this
stuff.

Sure, recruiters will tell you
that “you’ll learn so much more
here than at Google, which will
make you more valuable,” imply-
ing that it’s worth the $150k/
yr pay cut, but if you ask them
what, specifically, they do to

make a better learning environ-
ment than Google, they never
have a good answer.

Process/tools/culture
I’ve worked at two companies
that both effectively have infinite
resources to spend on tooling.
One of them, let’s call them
ToolCo, is really serious about
tooling and invests heavily in
tools. People describe tooling
there with phrases like “magi-
cal,” “the best I’ve ever seen,”
and “I can’t believe this is even

possible.” And I can see why.
For example, if you want to

build a project that’s millions
of lines of code, their build
system will make that take
somewhere between 5s and 20s
(assuming you don’t enable LTO
or anything else that can’t be
parallelized)5. In the course of
a regular day at work you’ll use
multiple tools that seem magi-
cal, because they’re so far ahead
of what’s available in the outside
world.

The other company, let’s call
them ProdCo pays lip service to
tooling, but doesn’t really value

Considering how much money
companies spend on hiring and
retaining “the best,” you’d expect
them to spend at least a (non-
zero) fraction on training.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449
https://en.wikipedia.org/wiki/Interprocedural_optimization
http://yosefk.com/blog/people-can-read-their-managers-mind.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://yosefk.com/blog/people-can-read-their-managers-mind.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://news.ycombinator.com/item?id=11314449
https://news.ycombinator.com/item?id=11314449

24 hacker bits

it. People describing ProdCo
tools use phrases like “world
class bad software” and “I am
2x less productive than I’ve ever
been anywhere else,” and “I can’t
believe this is even possible.”

ProdCo has a paper on a
new build system; their claimed
numbers for speedup from par-
allelization/caching, onboarding
time, and reliability, are at least
two orders of magnitude worse
than the equivalent at ToolCo.
And, in my experience, the actu-
al numbers are worse than the
claims in the paper.

In the course of a day of
work at ProdCo, you’ll use
multiple tools that are multiple
orders of magnitude worse than
the equivalent at ToolCo in mul-
tiple dimensions. These kinds
of things add up and can easily
make a larger difference than
“hiring only the best.”

Processes and culture also
matter. I once worked on a team
that didn’t use version control
or have a bug tracker. For every
no-brainer item on the Joel test,
there are teams out there that
make the wrong choice.

Although I’ve only worked
on one team that completely
failed the Joel test, every team
I’ve worked on has had glaring

deficiencies that are technically
trivial (but sometimes culturally
difficult) to fix.

When I was at Google, we
had really bad communication
problems between the two
halves of our team that were in
different locations. My fix was
brain-dead simple: I started
typing up meeting notes for all
of our local meetings and dis-
cussions, and taking questions
from the remote team about
things that surprised them in
our notes.

That’s something anyone
could have done, and it was a
huge productivity improvement
for the entire team. I’ve literally
never found an environment
where you can’t massively im-
prove productivity with some-
thing that trivial. Sometimes
people don’t agree (e.g., it took
months to get the non-version-
control-using-team to use ver-
sion control), but that’s a topic
for another post.

Programmers are woefully
underutilized at most compa-
nies. What’s the point of hiring
“the best” and then crippling
them? You can get better results
by hiring undistinguished folks
and setting them up for success,
and it’s a lot cheaper.

Conclusion
When I started programming, I
heard a lot about how program-
mers are down to earth, not
like those elitist folks who have
uniforms involving suits and
ties. You can even wear t-shirts
to work!

But if you think program-
mers aren’t elitist, try wearing
a suit and tie to an interview
sometime. You’ll have to go
above and beyond to prove that
you’re not a bad cultural fit.

We like to think that we’re
different from all those indus-
tries that judge people based on
appearance, but we do the same
thing, only instead of saying
that people are a bad fit because
they don’t wear ties, we say
they’re a bad fit because they
do, and instead of saying people
aren’t smart enough because
they don’t have the right ped-
igree… wait, that’s exactly the
same. 

You can get better results by hiring
undistinguished folks and setting them
up for success, and it’s a lot cheaper.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://yosefk.com/blog/people-can-read-their-managers-mind.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.joelonsoftware.com/articles/fog0000000043.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/wat/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/wat/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://danluu.com/wat/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://twitter.com/patio11/status/706884144538648576
https://twitter.com/patio11/status/706884144538648576

25hacker bits

Reprinted with permission of the original author. First appeared at danluu.com.

that wrote their DNS, and is now one of
the world’s experts on DDoS mitigation
for companies that don’t have infinite
resources. That guy wasn’t even a
networking person before he joined
Cloudflare. He’s a brilliant generalist
who’s created everything from a widely
used javascript library to one of the
coolest toy systems projects I’ve ever
seen. He probably could have picked
up whatever problem domain you’re
struggling with and knocked it out of the
park. Oh, and between the blog posts he
writes and the talks he gives, he’s one of
Cloudflare’s most effective recruiters.

4 I’m not going to do a literature review
because there are just so many studies
that link career earnings to external
shocks, but I’ll cite a result that I found
to be interesting: Lisa Kahn’s 2010
Labour Economics paper.

There have been a lot of studies that
show, for some particular negative
shock (like a recession), graduating
into the negative shock reduces lifetime
earnings. But most of those studies
show that, over time, the effect gets
smaller. When Kahn looked at national
unemployment as a proxy for the state
of the economy, she found the same
thing. But when Kahn looked at state
level unemployment, she found that the
effect actually compounded over time.

The overall evidence on what happens
in the long run is equivocal. If you
dig around, you’ll find studies where
earnings normalizes after “only” 15
years, causing a large but effectively
one-off loss in earnings, and studies
where the effect gets worse over time.
The results are mostly technically not
contradictory because they look at
different causes of economic distress
when people get their first job, and it’s
possible that the differences in results
are because the different circumstances
don’t generalize. But the “good” result
is that it takes 15 years for earnings to
normalize after a single bad setback.
Even a very optimistic reading of the
literature reveals that external events
can and do have very large effects on
people’s careers. And if you want an
estimate of the bound on the “bad”
case, check out, for example, the Guiso,
Sapienza, and Zingales paper that claims

to link the productivity of a city today to
whether or not that city had a bishop in
the year 1000.

5 During orientation, the back end of
the build system was down so I tried
building one of the starter tutorials on
my local machine. I gave up after an
hour when the build was 2% complete. I
know someone who tried to build a real,
large scale, production codebase on
their local machine over a long weekend,
and it was nowhere near done when they
got back.

Footnotes
1 This estimate is conservative. The
math only works out to 78 hours if you
assume that you never incorrectly reject
a trendy candidate and that you don’t
have to interview candidates that you
“correctly” fail to find good candidates.
If you add in the extra time for those,
the number becomes a lot larger. And
if you’re TrendCo, and you won’t give
senior ICs $200k/yr, let alone new
grads, you probably need to multiply
that number by at least a factor of 10 to
account for the reduced probability that
someone who’s in high demand is going
to take a huge pay cut to work for you.

By the way, if you do some similar
math you can see that the “no false
positives” thing people talk about is
bogus. The only way to reduce the
risk of a false positive to zero is to not
hire anyone. If you hire anyone, you’re
trading off the cost of firing a bad hire
vs. the cost of spending engineering
hours interviewing.

2 I consider this to generally be a good
practice, at least for folks like me who
are relatively early in their careers.
It’s good to know what your options
are, even if you don’t exercise them.
When I was at Centaur, I did a round
of interviews about once a year and
those interviews made it very clear
that I was lucky to be at Centaur. I got
a lot more responsibility and a wider
variety of work than I could have gotten
elsewhere, I didn’t have to deal with as
much nonsense, and I was pretty well
paid. I still did the occasional interview,
though, and you should too! If you’re
worried about wasting the time of the
hiring company, when I was interviewing
speculatively, I always made it very clear
that I was happy in my job and unlikely
to change jobs, and most companies
are fine with that and still wanted to go
through with interviewing.

3 It’s really not about me in particular.
At the same time I couldn’t get any
company to talk to me, a friend of mine
who’s a much better programmer than
me spent six months looking for work
full time. He eventually got a job at
Cloudflare, and was half of the team

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://danluu.com/programmer-moneyball/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://citec.repec.org/d/eee/labeco/v_17_y_2010_i_2_p_303-316.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://citec.repec.org/d/eee/labeco/v_17_y_2010_i_2_p_303-316.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nber.org/papers/w14278?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nber.org/papers/w14278?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nber.org/papers/w14278?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nber.org/papers/w14278?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.nber.org/papers/w14278?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

26 hacker bits

By CHRISTIAN MACKEPRANG

Programming

Writing good code:
How to reduce the cognitive
load of your code

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

27hacker bits

 Don’t personalize your work in ways that would
require explanations.

 I like taking advantage of variables to compartmentalize logic.

Low bug count, good perfor-
mance, easy modification.
Good code is high-impact,

and is perhaps the main reason
behind the existence of the pro-
verbial 10x developer. And yet,
despite its importance, it eludes
new developers. Literature on
the subject usually amounts to
disconnected collections of tips.
How can a new developer just
memorize all that stuff? Code
Complete, the greatest expo-
nent in this matter, is 960 pages
long!

I believe it’s possible to con-
struct a simple mental frame-
work that can be used with any
language or library and which
will lead to good quality code by
default. There are five main con-
cepts I will talk about here. Keep
them in mind and writing good
code should be a breeze.

Keep your personal
quirks out of it
You read some article which
blows your mind with new tricks.
Now you are going to write clev-
er code and all your peers will
be impressed.

The problem is that people
just want to fix their bugs and
move on. Your clever trick is
often nothing more than a dis-
traction. As I talked about in Ap-

plying neuroscience to software
development, when people have
to digest your piece of code,
their “mental stack” fills up and
it is hard to make progress.

Don’t code “your way”. Just
follow the coding standards.
This stuff is already figured out.
Make your code predictable and
easy to read by coding the way
people expect.

Divide and conquer it
Complex code can often be
clarified through modulariza-
tion, and there are more ways to
do this than just creating more
functions. Storing the result of
long conditionals into a variable
or two is a great way to modu-
larize without the overhead of
a function call. This will even
allow you to compose them into
larger conditionals, or to reuse

the result somewhere else.
The approach when break-

ing a problem down should be
to have each section as focused
as possible, affecting only local
state, without mixing in irrele-
vant issues, and without side-ef-
fects if at all possible.

Programming languages and
libraries often come with their
issues, and abstracting them
away can help your code mind
its own business. The Single
Responsibility Principle is anoth-
er example of how focused and
localized code leads to good
design.

TDD, besides coming with its
own benefits when done right,
has been forcing people to apply
certain principles which were
previously not as popular. State-
less code was dismissed as slow
and unnecessary (see: most old
C/C++ code), and now everyone
is talking about pure functions.
Even if you don’t do TDD, you
should learn the principles that
drive it. Working under new
paradigms will turn you into a
resilient developer.

Make it discrete and
process-able
Your computer and your tools
can have as much of a hard time
dealing with your code as you,
and there is some correlation

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
http://chrismm.com/blog/applying-neuroscience-to-software-development/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://chrismm.com/blog/applying-neuroscience-to-software-development/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://chrismm.com/blog/applying-neuroscience-to-software-development/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://code.tutsplus.com/tutorials/solid-part-1-the-single-responsibility-principle--net-36074?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://code.tutsplus.com/tutorials/solid-part-1-the-single-responsibility-principle--net-36074?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

28 hacker bits

 Using ServiceLocator is an example of design that leads to
poor integration with most IDEs.

 Actual code from a makefile I wrote. Junior devs can’t
handle overuse of new tech.

between the number of prepro-
cessors and mutations you have
to apply and how convoluted the
code is.

Let’s set aside the possi-
ble benefits of those addition-
al build tools for a moment.
Chances are that they require
you to use domain-specific lan-
guages such as custom templat-
ing, or complex and dynamic
data structures such as hash
tables. Your IDE generally isn’t
going to be good at handling
this stuff, and locating relevant
pieces of code will become
harder.

Avoid using language ex-
tensions and libraries that do
not play well with your IDE. The
impact they will have on your
productivity will far outweigh
the small benefit of easier con-
figuration or saving a few key-
strokes with more terse syntax.

Another way to keep the
“integrated” part of your IDE
relevant is to avoid magic code.
Most languages will provide
ways for you to write more
dynamic code. Abusing these
features such as by using magic
strings, magic array indexes and
custom template language fea-
tures will lead to a more discon-
nected codebase.

Generally any features which
only a human will know the

meaning of will lead you down
this road, and it’s a hard road
to come back from, because if
your IDE doesn’t understand the
code, any refactoring features
it has are going to be useless
when you want to move to a
more static architecture.

Make it readable
Work towards having a predict-
able architecture. Your team-
mates will find it easier to locate
things, and this will greatly
reduce the time it takes them
to get something done. Once
you’ve agreed on an overall
architectural structure for your
project, make it obvious where

the main elements are located.
Using MVC? Place models,

views and controllers in their
own folders, not three folders
deep or spread across several
different places.

I talked about modulariza-
tion. There can also be exces-
sive modularization, which will
usually make code harder to
locate. Your IDE might help
some, but often you will be torn
between having your IDE ignore
a vendor/library folder due to it
having too much irrelevant code,
or having it indexed and dealing
with the problem manually. It’s
a lose-lose situation. Try to use
fewer libraries by choosing the
ones that cover as many of your
needs as possible.

Libraries and tooling can
also be a barrier for new devel-
opers. I recently built a project
using EcmaScript 7 (babel),
only to later realize that our
junior dev was getting stuck
trying to figure out what it all
meant. Huge toll on the team’s
productivity. I underestimated
how overwhelming that can be
to someone just starting out.
Don’t use tools that are still too
hard to get a grip on. Wait for a
better time.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

29hacker bits

 Fluent interfaces have been abused often in recent times.

Make it easy to digest
If you’ve made it this far, I have
good news: this is probably the
most important part. Choosing
good names is known to be one
of the larger issues in software
development. Build tools are
unlikely to improve on this, and
the reason is that computers
can’t really know the reasoning
behind a solution. You have to
document the why. Relevant and
contextual variable and function
names are a great way to do
this.

Names that convey purpose
will even reduce the need for
documentation.

Using prefixes in names is
a great way to add meaning to
them. It’s a practice that used to

be popular, and I think misuse
is the reason it hasn’t kept up.
Prefix systems like hungarian
notation were initially meant to
add meaning, but with time they

ended up being used in less
contextual ways, such as just to
add type information.

Finally there is always some-
thing to be said about keeping a
low cyclomatic complexity. What
this means is to keep the num-
ber of conditional branches as
low as possible. Each additional
branch will not only add indenta-
tion and hurt readability, but will
more importantly increase the
number of things you have to
keep track of.

Conclusion & further
reading
These are five simple and over-
arching concepts, and my goal
here was to make your learning
easier by giving you boxes into
which you can put all those code
organization ideas.

Practice focusing on these
aspects while programming
to solidify them. If you haven’t
done so yet, I really recommend
Code Complete. It comes with a
large number of examples and
will dissect almost any situation
you might run into. 

You have to
document the why.

Reprinted with permission of the original author. First appeared at chrismm.com/blog/.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.joelonsoftware.com/articles/Wrong.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.joelonsoftware.com/articles/Wrong.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/
http://chrismm.com/blog/how-to-reduce-the-cognitive-load-of-your-code/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

30 hacker bits

Interesting

My biggest regret
as a programmer

By ANDREW WULF

A little over 20 years ago
I was at a crossroad. My
second company was

petering out when our 5 years
of building Deltagraph for the
publisher ended (they wanted
to move into the nascent Inter-
net space). At that point I had
13 years’ experience as a pro-
grammer but also 9 years or so
experience running a company
(at the same time).

I no longer wanted to do
both. My first company (85-87)
not only built a new kind of
spreadsheet program but also
published it ourselves. I led the
company, did all the press inter-
views, managed the investors,
did all the usual business stuff
and also was one of the three
programmers and the UI design-
er. After we shipped the product
in early 87 I also wound up in
the hospital. Trying to be both
leader and programmer was
simply too much.

So at that point in 1994 I
could have gone either into tech-
nical management or continued
as a programmer. I chose pro-
grammer because it was easier.
Today I realize how wrong I was
despite all the great stuff I’ve
been able to work on and ship
over the past 20 years. Going
towards the CTO/CIO/VP Engi-
neering route, which was fairly
new back then, would have been
a much better plan.

I was in the Bay Area for a
year around 1995 and worked
at Apple for the last half. Apple
looked to be falling apart and I’d
left to return to Texas as I didn’t
want to see my favorite compa-
ny die around me. Big mistake.

Not only did Apple begin a
huge turnaround a year later
when Steve came back, but the
whole Dotcom explosion hap-
pened.

Being both an experienced
programmer and leader who
understood what it took to de-
liver (we did 9 major releases of
the apps during my time, all of
which I built the master floppies
for, with no need for hot fixes
which were hard to do then any-
way) I can only imagine how in
demand I could have been. Once
you get to the level of one of
those titles you can keep moving
forward and up.

My sister started as a pro-
grammer 30 years ago but
jumped into management within
the first year and has been a VP
at a big company for the past
15 or so years. The huge parent
of the travel company I worked
for a couple years ago had a
CEO who started 15 years earlier
as a programmer. Of course
these types of jobs can be hard
and unpleasant but for that the
remuneration is way greater. My
sister has 10X the assets I have.

Over the years I’ve seen how

little ability you have as a pro-
grammer, no matter how good
you are, at making a difference
or changing things that are bro-
ken. I simply didn’t realize how
little room you have to advance
as just a programmer (or even
as an architect or the like); the
power to change exists at a level
not available to you as a mere
delivery device.

Add to that the financial
benefits, the higher likelihood
of substantial IPO participation,
and all the other things you gain
access to, and being a program-
mer means you have to be hap-
py with the opportunity to build
cool things.

Over the years the worst
places I’ve worked for or helped
as a consultant for those 5 or so
years were almost always due to
inept, incompetent or downright
idiotic technology management.
There isn’t enough room in this
blog to list them all.

Take the VP of engineering
for a bank who remarked that he
didn’t need to understand tech-
nology as he managed people,
yet still made technology deci-
sions.

The CIO at the same place
never believed anything his
employees told him but believed
everything vendors told him. Of
course we knew he was taking
kickbacks as we kept buying
things we had no use for and

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

31hacker bits

he kept writing articles for them
relating how wonderful their
products were for us. Yet we
used almost none of it. Some
time after I left he was fired and
perp-walked out of the com-
pany, yet immediately he got
another similar CIO position.

The worst job I ever had
started out as what I thought
would be awesome. A post-start-
up had a successful niche in
their industry; both they and
their arch-rivals (different niche)
both wanted to launch into a
broader public market and the
market was heating up.

I was hired as a second
programmer. The other pro-
grammer and manager had been
hired to build a new broader
online store as the existing one
was too inflexible and slow for a
big market.

The company had zero
technical leadership otherwise,
and the CEO and the other
two founders had no technical
experience or knowledge. The
programmer constantly talked
about how wonderful his back-
end code was and the man-
ager supported him. I built a
front end piece, put up demos,
checked in my source every day.
When I thought it a good time to
integrate I discovered the other
programmer, after 10 months,
had checked innothing.

When I pointed this out the
manager said “he never checks
in anything until it’s perfect”.
Yet no one called this out as
stupid other than me. I spent

the next two months trying
desperately to get the 3 found-
ers to bring in people who could
actually deliver (I knew several
people) but they were afraid to
make any changes and admit
they had screwed up in hiring
these two guys. Eventually I gave
up and left.

A year later, after still get-
ting nothing from this guy, they
fired both of them. They tried to
hire some consulting firm but
got nothing from them either.
By this time it was too late. The
rivals? They became a billion
dollar public company and I see
their commercials on TV some-
times. I always want to throw a
shoe at the TV when I see them.
We had everything but a damn
store and actual technology
leadership. If I had been such
a person instead of a program-
mer I would have had the track
record and clout to make it
happen. But all I was was a pro-
grammer.

I could go on and on but
the key is that you can’t make
changes in how people do
things in a technical sense un-
less you have the ability, author-
ity and opportunity. Once you
make that call and assuming you
find the right places to grow, the
sky is really the limit.

When I was on TV (Com-
puter Chronicles) in early 1987
showing our product Trapeze,
the other presenter was Mike
Slade who was product manager
of Excel. At the time young me
thought he was some random

marketing weenie (young peo-
ple can be pretty stupid). Yet he
started all these companies later
including ESPN, worked for Ap-
ple in various leadership roles,
was a good friend of Steve Jobs
and started his own VC firm.

And today I am still just a
programmer. Who’s the wee-
nie now? I doubt I will ever be
able to really retire. Thankfully
I am still good at delivery (I was
recruited into my present job by
a former manager who needed
what he knew I can do) but still
all I will be until I croak is what I
am now.

Being a programmer for
nearly 35 years and still being
able to get things done and ship
is still fun and I’ve been able to
work on amazing things over
the years. But I can still feel the
regret of not seeking the chal-
lenge of just leadership. In some
ways programming was the easy
choice. Given how close I got to
the whole Dotcom timeframe,
or even the return of Steve to
Apple, and still had recent lead-
ership experience, I could have
been almost anything.

So yes I regret not taking
that choice and seeing where it
would have led me, yet I would
have missed all the fun of writ-
ing code and the soul-draining
jobs that often come with it
where you can’t really fix any-
thing.

I came to a fork in the road
and took the one less traveled.
Perhaps now I realize why. 

I came to a fork in the road
and took the one less traveled.

Reprinted with permission of the original author. First appeared at thecodist.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://thecodist.com/article/my-biggest-regret-as-a-programmer?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

32 hacker bits

Interview: How to become
a better programmer

Interview

John Sonmez is the founder of SimpleProgrammer.com,
author of the bestselling book Soft Skills: The Software
Developer's Life Manual and creator of over 50 profes-
sional developer courses ranging from iOS, Android,
Game Development, Java and more.

In the past few months, we've
gotten a number of emails
from readers about how to

be an all-around more effective
programmer. Learning new tech-
nologies faster, becoming more
relevant, being more productive
and interviewing better all came
up as hot button topics.

 To help us through these
topics this month, we chatted
with John Sonmez, who's been
helping software developers,
programmers and other IT
professionals, become better at
their jobs.

 Without further ado, here's
John Sonmez.

Can you fill in some gaps in
that intro, and then give us
a glimpse into your personal
life?

Well, I'd say the main thing
about me is that I am always

interesting, and growing and
developing myself and sharing
what I learned in the process
with others to help them along
the way.

My real mission in life right
now is to help as many software
developers not just get better at
their job and make more money,
but to really live better, happier,
and more fulfilled lives, and to
achieve the goals they set for
themselves.

 I developed software for 15
years before I realized that the
most important skills in life are
not technical, but rather what I
call soft skills.

 Once I realized this, I re-
alized that I could really help
other software developers get
ahead in their career and reach
success by taking a much more
holistic approach to their lives,
instead of just focusing on the
technical aspects.

 I believe in being transpar-
ent, so I do almost everything in
public and share as I learn and
grow myself.

I live in sunny San Diego
with my wife, Heather, and
5-year-old daughter, Sophia.

From your coaching and con-
sulting, you've come across
engineers looking to take
things to the next level. Can
you go into detail about the
challenges and help us under-
stand the steps your clients
took to get to that next level?

It's difficult to make a general-
ization about what is holding
engineers back from reaching
the next level, because so many
people have so many different
ideas of what success even
looks like, as well as very differ-
ent mental models and strug-
gles. But I'd say that one of the

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://SimpleProgrammer.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

33hacker bits

biggest things is mindset. When
you change someone's mindset,
you change his/her life.

It seems very basic, but so
many people have extremely
limiting mindsets. They be-
lieve something about how the
world works and place artificial
limitations on themselves that
prevent them from succeeding.
They believe they are some-
how not good enough or that
they are not "lucky," instead of
realizing that there are very few
things that can't be achieved by
a person who is determined and
unwilling to give up.

I've coached (personally and
through my blog, books, videos
and podcasts) tens of thou-
sands of developers to develop
the kind of mindset needed to
succeed and really reach that
elusive next level.

 I've had to go through it
myself – in fact, I still am. Every
single day I try and expand my
mindset, and grow a little more
and help others along the way.

 Bringing things back down
to a very practical aspect, I'd
say one of the biggest things
that software developers and IT
professionals don't know how to
do, that can greatly impact their
career, is to learn how to market
themselves. I sell a course on
how to market yourself as a soft-
ware developer. It teaches devel-
opers why marketing themselves
is so important and critical to

success, and how to build a
personal brand and specialize to
become an expert in a particular
area of software development,
which can yield huge results.

 I've seen huge success my-
self and with many developers
I've worked with. Multiple stories
of 3x income increases, new and
better jobs, successful freelanc-
ing or consulting practices, and
just learning how to sell the
value you already have better, as
well as to learn how to give free
value to others in order to build
a brand and reputation.

In general, what are the top 3
essential skills a software en-
gineer should develop? What
is the most efficient way to
develop these skills?

The first and most important
skill is learning to learn.

Developing the ability to
teach yourself is by far the most
important skill you can develop
in life – especially for a software
developer who has to constant-
ly face changing technologies
and is forced to learn at a rapid
pace, just to keep up. This skill
was so important that I specif-
ically did a course on it called
“10 Steps to Learn Anything
Quickly.”

I found so many developers
doing this wrong or not doing
this at all that I felt I had to ad-
dress it, because it's so import-
ant.

I could talk about how
important this single skill is for
hours.

 A good way to develop this
skill is to get in over your head
and do things that you are not
ready for yet, because it forces
you to sink or swim and to learn
in a limited time frame, focusing
on what is essential.

 Next, I'd say is a hybrid of
discipline and gumption. It's
the ability to do what needs to
be done, whether you feel like
doing it or not. Most success in
life comes from going after what
most people would have given
up. So many people quit too ear-
ly or get discouraged when they
are just a few feet from gold.

To develop this skill, I prac-
tice doing one thing I dislike
every day, whether I feel like it
or not. Discipline comes from
learning to produce results even
when motivation is lacking.

Finally, I'd say people skills
are very important – essential –
for just about anyone.

Learning how to properly in-
teract with people and deal with
tricky social situations is a skill
that is always valuable, because
regardless of what our job is, we
are almost always dealing with
people.

To develop this skill, I rec-
ommend reading Dale Carne-
gie's famous book: "How to Win
Friends and Influence People."

The first and most important skill
is learning to learn.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

34 hacker bits

How can programmers balance
being productive at work and
learning new frameworks,
tools and languages to stay
up-to-date?

Devote some time each day
to self-development. I used to
walk on the treadmill and read a
technical book of some sort for
at least half-an-hour each day.
This helped me get in shape and
keep my technical knowledge
sharp.

Another important thing to
do is to not learn what you don't
need to learn. Only learn what

you are actually going to use.
It's great to read blog posts

and technical news to stay
up-to-date on trends and devel-
opments in the field, but don't
learn every new framework that
comes along. Instead, focus on
knowing enough about it so
that if you need to learn it in the
future, you can. Again, learn-
ing to teach yourself effectively
will give you the confidence
you need to know that you
can do just-in-time learning to
learn something when the time
comes, instead of potentially
wasting hours trying to learn
something ahead of time that
you may or may not actually use.

Let's dial in on staying up-to-
date. How can software devel-
opers stay informed of what's
truly important with every-
thing evolving so quickly in
the industry?

Devote time each day to read
blogs and news sites like Hack-
er News. Not a huge amount of
time, but perhaps 30 minutes
each day will help keep you up-
to-date.

Also realize that there is
nothing truly new. Everything is
always a reinvention of some-
thing else from the past.The

pendulum always swings back.
First it's thin clients, then it's
thick clients, then it's thin cli-
ents inside of a thick client and
back again.One you realize this,
absorbing new information and
spotting trends becomes a lot
easier.

What is the #1 thing holding
back programmers from tak-
ing things to the next level?

[See John's video response. If
you enjoyed his response, sub-
scrbe to his YouTube channel of
23K subscribers.]

Programming interviews are
possibly the worst invention in
the software industry (sorry,
that's Ray's opinion). However,
they are a fact of life if you're
looking to get hired. What is
the #1 thing programmers
can do to improve their odds
of nailing that interview and
getting hired?

Think of them as a filter, not
an actual test of your ability to
perform at the job.

Don't fight them; instead
realize they are an opportunity
to artificially thin the field which

will actually increase your chanc-
es of getting the job.

 With that in mind, become
an expert at passing these kinds
of interviews.

 Practice coding on a white-
board. Practice at sites like
Codility and Top Coder to solve
the kind of algorithm and data
structure problems that big
companies like Microsoft and
Google will inevitably ask.

I used to fight these pro-
gramming interviews and com-
plain about them, until I realized
I just needed to get good at
them. It didn't take very long,
but it was a skill that allowed me
to land several really good jobs
and to feel more confident in
general.

Another important thing to do is
to not learn what you don't need
to learn.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
mailto:https://www.youtube.com/watch%3Fv%3DhShClvKVa-A?subject=

35hacker bits

This is one of those times
when you have to study for the
test and not for the material.

Plus, even though program-
ming interviews may seem silly,
the skills I’d developed to pass
them have actually been quite
helpful in my career in other
areas when I had to solve a dif-
ficult problem, and I knew just
what algorithm and data struc-
ture to use.

And since most developers
will not do well on these kinds
of interviews, since they won't
prepare for them, taking the
time to do so will give you a
huge advantage.

What is a parting piece of ad-
vice to Hacker Bits readers?

Realize that while technical
abilities are important, they are
not the most important. In fact,
probably less than 10% of the
success you see in your career
will come from your technical
abilities. It's really the soft skills
that make the difference in your
career and life, so actively focus
on developing those skills.

 Stop limiting yourself so
much. You hear it over and over

again, but you can literally do
anything you want right now
with your life and no one can
stop you but yourself. We live in
a time of such incredible free-
dom and opportunity, yet so
many of us let our minds and
attitudes defeat us before we've
even given it a shot.

 If you would have told me
that I'd earn my living by inspir-
ing and helping people develop
themselves 5 years ago, I would
have told you that you were
crazy. I had no idea what my
own potential was. I had no idea
I could do what I wanted to do.
I just had to be willing to work
for it.

Stop giving up. Stop accept-
ing less. Stop making excuses
for yourself. This is your life
right now. No one is coming to
fix it for you. No one is coming
to save you. It's not going to
magically get better. Your prob-
lems are not going to magically
go away. It's up to you right
now – in this very moment – to
decide to take action and then
to follow through and to keep
following through until the job
is done. Do not let another day

go by living the life you are not
supposed to live. Do not say
"someday I will do this, or some-
day I will do that." Do not wait to
live your life. Live it now.

Give. Don't worry about what
you’ll get in return. You can't
out-give the universe. The more
people you help and the more
you give, the more you will get.
Create value for others, encour-
age them, and help them along
the way. I guarantee you that if
you find a way to help 1 million
people, you'll earn more than 1
million dollars.

Where can people find out
more about you? And where
can they pick up a copy of
your book?

Go to simpleprogrammer.com.
There you'll find my blog posts,
links to my YouTube videos,
podcasts,products and more.

You can get Soft Skills at
simpleprogrammer.com/softs-
kills. I recorded an audio version
of the book on Audible.com as
well. 

It's up to you right now – in this very
moment – to decide to take action and
then to follow through and to keep
following through until the job is done.

Interview was edited for brevity and clarity.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://simpleprogrammer.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://simpleprogrammer.com/softskills?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://simpleprogrammer.com/softskills?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

36 hacker bits

By MARTIN SANDIN

Programming

Four strategies for
organizing code

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

37hacker bits

This article outlines four
different strategies for
organizing code:

•	 by component
•	 by toolbox
•	 by layer
•	 by kind

I think these four form a kind of
hierarchy with regards to which
kind of cohesion they favor and
in my experience they cover
most of the real-world code I’ve
worked with, pleasurable and
not. There are an endless num-
ber of possible strategies but
I’ve (thankfully) never encoun-
tered anyone who organizes
packages into projects by cre-
ation date or classes into pack-
ages by first letter.

The whys and
whats of organizing
organizing code
It is a funny thing that most
of the advice you will hear and
read on how to develop software
basically prescribes how you
should organize your code, a
topic that doesn’t matter to the
computer. As far as the machine
is concerned, all this talk about

coupling and cohesion is mostly
irrelevant; it doesn’t care if you
put all your code in a single mil-
lion line method, sort your class-
es alphabetically, or give all your
variables single letter names.

Code organization is not
about communicating with the
computer but rather all about
trying to make sure that people
can understand the code well
enough that they will be able to
maintain and evolve it with some
degree of efficiency and confi-
dence.

“Programs should be writ-
ten for people to read, and
only incidentally for ma-
chines to execute.”

— Structure and Inter-
pretation of Computer
Programs by Abelson and
Sussman

When a unit of code grows
too large and contains too many
elements, it becomes hard to
navigate, hard to get an over-
view of, and hard to understand:
it becomes complex.

Our main weapon against
this complexity is divide and
conquer: we split the unit into
smaller parts which we can un-
derstand in isolation.

For classes it is fairly well
understood that this should be
done so that we create logical
objects which exhibit good co-
hesion and fit well in the domain
model.

With projects  —  which are
separately compiled  — v we have
to break circular dependencies
and try to make sure that they
expose reasonably logical and
stable interfaces to other proj-
ects.

On the level in between 
—  packages in Java or name-
spaces in C#  —  there is a lot
more variation and in my expe-
rience many developers chose a
strategy without much consider-
ation given to why that particu-
lar strategy should be employed.

The first three strategies
described in this article can be
used at either class, package,
or project level while the last
one  —  organization by kind  — 
is more or less specific to the
package level.

Strategy #1 — 
by component
Organization by component
minimizes complexity by em-
phasizing external and internal
cohesion of code units, e.g.

 Reduced total complexity doesn’t follow unless you take the step of
eliminating dependencies

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

38 hacker bits

packages. The former means
that the package has a minimal
interface, which exposes only
concepts which that are strongly
related to the service the compo-
nent provides. The latter means
that the code in the package is
strongly interrelated and thus
strongly related to the provided
service.

A lot can be and has been
written about what constitutes
a good unit of abstraction and
covering even a sliver of that
would make this article too
long by far. Suffice to say that
the SOLID principles are a great
place to start learning, and that
practice and reflection on how
things are working out and why
that might be is paramount.

In this article I will only
cover what in my experience is
the single most common rea-
son for rampant complexity in
code bases where people have
actually tried to organize things
by divide and conquer: failure
to isolate packages into compo-
nents.

New units of code are often
created by identifying a subset
of the functionality contained in
one (or more) existing packages
and creating a new abstraction
from the corresponding code,
resulting in more but smaller
units.

This creates code which
looks easier to digest but it is
mainly window dressing until
further steps are taken: the
benefit of reduced total com-
plexity doesn’t follow unless you
then take the step of eliminating
dependencies.

In my opinion, packages
which have mutual dependencies
should not be considered sepa-
rate units of code at all as none
of them can be understood in
isolation from the others.

In the example above. it is
easy to imagine that the Graph
class has a reference to a Graph-
Storage in which it persists itself
whenever it has changed.

Not only does the graph_
storage package depend on a lot
of details of the graph package
domain model about which it
should be rightfully ignorant,
the packages also remain mu-
tually dependent. The easiest
dependency to eliminate is often
that from the new package to
the old one (see figure above).

The most important reason
that this is an improvement is
that when reading the storage
code one can now rely on the
fact that the only things it need
to know about that which it is
storing is what is in the Storable
interface.

“No client should be forced
to depend on methods it
does not use.”

— The Interface Segrega-
tion Principle

The next step would be to
eliminate the direct dependency
from the graph package to the
storage package. This could for
example be done by creating a
GraphPersister interface in the
former and having a higher level
package inject an adapter imple-
mentation into the Graph. And
once again the primary benefit
would be that the exact set of
storage functionality the graph
package depends on would be-
come obvious.

“…packages which have
mutual dependencies
should not be considered
separate units of code at
all…”

In theory this process might
sound fairly easy but it takes
a lot of experience to learn to
identify suitable components
and strategies for isolating
them. It is quite common to
start the process only to find out
that you didn’t quite get the ab-
straction right and need to back
out of the change.

 Eliminating dependency

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29

39hacker bits

The rewards for properly
isolating components are great
however: code which is easy to
understand, easy to improve,
easy to test, and  —  incidentally 
—  easy to reuse.

Strategy #2 —
by toolbox
Organization by toolbox focuses
on external cohesion, providing
a consistent toolbox which the
consumer can choose from. This
strategy is weaker than organiz-
ing by component as it drops
the requirement for strong
internal cohesion, e.g. that the
constituents are all strongly
interrelated.

The parts of a toolbox are
often complementary implemen-
tations of the same interface(s)
which can be usefully chosen
from or combined, rather than
sharing a lot in the way of imple-
mentation.

•	 Collection libraries are typi-
cally organized as toolboxes
with a set of complementary
implementations of a set of
collection interfaces with
varying characteristics, with

regards to areas such as
time complexity and memory
consumption. There might
also be a unifying theme to
the toolbox, such as only
containing disk-based data
structures.

•	 Logging libraries are not
necessarily toolboxes in
their entirety but often
contain a toolbox of e.g.
log-writer implementations,
which target different desti-
nations.

Toolboxes arise because
they are convenient to the con-

sumer and each “tool” in the box
isn’t big enough to warrant its
own unit even though they are
technically independent.

Each component in a GUI li-
brary might for example deserve
its own package but giving each
its own project is unnecessarily
onerous. Similarly each collec-
tion implementation might fit in
a single class and putting them
all in individual packages would
be unnecessary bureaucracy.

At least in the latter case a
single collection implementa-
tion which that grows beyond a
couple of classes should get its
own package, possibly except
for a thin facade for the sake of
external consistency.

Strategy #3  —
by layer
Organization by layer favors
workflow cohesion instead of
trying to control complexity by
minimizing cross-unit coupling.
The code is split along layer
boundaries defined by issues
such as deployment scenarios
or areas of contributor respon-
sibility.

 Toolbox with a facade for DiskList for the sake of external consistency

 Component coupling across layers

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

40 hacker bits

This strategy is different
from organization by toolbox
in that layers don’t present a
single, minimal, and coherent
interface to the other layers,
but instead a wide interface with
many constituents which that
are accessed piecemeal by the
corresponding constituents of
the consuming layer.

The typical characteristic
of organization by layer is that
the logical coupling is stronger
within the logical components
that span across the layers than
within the layers themselves.

The most common failure
mode of this strategy is that
most changes require touching
files across all the layers, basi-
cally the textbook definition of
tight coupling.

“Given two [units of code],
A and B, they are cou-
pled when B must change
behavior only because A
changed.”

— The C2 wiki

Under this scenario, logical
intra-component dependencies
end up like ugly nails driven
through your supposedly decou-

pled layers, pulling them togeth-
er into a single — often wildly
complex — unit.

Organization by layer should
be used cautiously as it often
increases total system complex-
ity rather than help control it,
but there are cases where the
benefits it provides outweigh
this drawback.

In those cases it’s often
worth sequestering your layer
dependency into a single place
in your consumer code rather
than having its tendrils reach
throughout the entire code base:

•	 Don’t let references to lan-
guage resource files infil-
trate your entire code base,
but rather map all results
and errors from your internal
components to language re-
source messages in a single
place near the presentation
layer.

•	 Don’t use the value objects
generated from your JSON
schema beyond your service
layer; , translate them into
proper domain objects and
calls at the earliest time
possible.

Strategy #4  —  by kind
Organization by kind is a strate-
gy which tries to bring order to
overly complex units of code by
throwing the parts into buckets
based on which kind of class (or
interface, …) it is deemed to be.
In doing this it ignores depen-
dencies and conceptual rela-
tionships and typically produces
packages with names such as
exceptions, interfaces, manag-
ers, helpers, or entities.

Organization by kind is
different from organization by
toolbox in that it drops any
pretense that the classes in a
package are complementary, in-
terchangeable, and/or form any
kind of sensible library when put
together.

Nobody that I know of is
advocating using this strategy
for organizing code into sepa-
rate classes or projects (“here’s
the class with all the string
members” or “here’s the project
in which we put all our excep-
tions”).

I consider organizing code
by kind harmful as it hides the
actual problems of complex
code and thus make developers
feel that they’ve fixed it while

 Layers nailed together into a single  —  very complex  —  unit

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

41hacker bits

the overall complexity remains
the same.

The example above looks
kind of neat with everything
tucked into bite-sized packages,
but almost every change re-
quires touching every package,
meaning that the packages are
in fact tightly coupled.

The other big problem with
this strategy is that if it is taken
to its extreme, it requires ev-
ery class to be of a clear-cut
kind. I’ve seen this warp en-
tire code-bases as all kinds of
strange things get created and
designated a Manager or a Help-
er just to fit into some package.

“…package size isn’t the
main problem, the number
of interdependent parts is.”

I consider organization by
kind a code smell but in my ex-
perience from commercial proj-
ects — mainly in Java and C# — it
is quite common. I believe that
this happens because it seems
to provide an easy way to par-
tition large packages and most
people aren’t aware that pack-
age size isn’t the main problem,
the number of interdependent
parts is.

Summary
Organizing code is a core skill
for software developers and as
with all skills the most effective
way to improve is to reflect on
your previous choices and the
fallout from them. There are a
wide array of different strategies
for organizing code and learn-
ing to recognize both the useful
and the dangerous ones is very
important. 

Reprinted with permission of the original author. First appeared at medium.com/@msandin.

 Project organized by kind

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://medium.com/@msandin/strategies-for-organizing-code-2c9d690b6f33

42 hacker bits

Opinion

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

43hacker bits

By HENRIK JORETEG

4.	 You could even pick from
a few different status bar
colors!

I don’t know whether this
type of app was actually intend-
ed to be the primary mechanism
for 3rd party dev to build apps
for iOS but regardless,it was way
ahead of its time.

Unfortunately, the web plat-
form itself wasn’t quite ready
for the spotlight yet. It was sort
of possible to build web apps
that looked and performed like
native apps, and I was trying to
do this 6 years ago using David
Kaneda’s awesome jQTouch lib.
Hilariously, the corny little demo
video that I posted led to a call
from David and almost got me
a job at extjs right as they were
rebranding to Sencha and start-
ing to build Sencha Touch. But
the story for offline was terrible.

But anyway, as it turned out,
the capabilities of the web on
iOS were not quite enough to
satiate ravenous developers. So
developers were left clawing for
the ability to build stuff that ran
natively on the device to give
them better performance and
deeper API access.

I don’t know about you, but
the idea of having a fully capa-
ble web browser in my pocket
was a huge part of the appeal.

That’s never changed.
Of course I don’t know

the full backstory, but it sure
seemed like the original plan for
3rd party developers on iOS was
to have us all just build apps
using the web. Safari added
support for making web apps
that could be added to your
home screen as an icon and by
including a few magical <meta>
tags you could use to create
something that could sort of be
“installed” to your home screen.
Then, when you opened it would
run in “standalone mode”.

These were, in many ways,
the original “Progressive Web
Apps” and this was sometime
around 2009!

Think about it…
1.	 They started in the brows-

er, but then you could kind
of upgrade them to “home
screen status”.

2.	 When you ran them from
the home screen they’d
open with a splash screen
and without any visible
browser UI.

3.	 You could pick a loading
screen and app icon.

Last Monday I was all excited.
I had just gotten the green
light to start prototyping a

new Progressive Web App for a
client I've been working with.

I pulled out an older Android
phone that I keep around for
development. Then I also got my
sleek, new, shiny iPhone 6s out
of my pocket, with its smooth
curves and speedy OS. But as I
looked at my iPhone I was kind
of bummed out.

I realized that this slick piece
of Apple hardware was less
capable as a platform for web
applications than my dusty old
Android dev phone.

At that point I knew I was
over iOS.

So, instead of opening my
text editor, I placed an order for
a Nexus 6P and signed up for
Google fi phone service (which is
awesome, btw).

Just like that, after 7+ years,
bye bye iOS.

What!? What’s wrong
with iOS?
Remember the original iPhone
announcement? Where Steve in-
troduced the amazing combina-
tion of a mobile phone, an iPod,
and an Internet communications
device.

Why I switched to Android
after 7 years of iOS

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://twitter.com/davidkaneda?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://twitter.com/davidkaneda?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://vimeo.com/8254856
https://vimeo.com/8254856
https://www.sencha.com/products/extjs/
https://www.sencha.com/products/touch/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://developers.google.com/web/progressive-web-apps?hl=en
http://fi.google.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

44 hacker bits

Enter the iOS SDK and
App Store
Apple made what turned out to
be a really smart business deci-
sion: they released an iOS SDK
and an App Store, and the rest is
history.

First, I was excited about
“apps” just like everyone else
seemed to be. Just think, here
we had been busy building
“applications” when we really
should’ve been building “apps”
all along! Who knew?! ;)

Anyway, I quickly found
myself hunting for the best
apps and switching to whatev-
er bank, social networks, and
other services had the best iOS
apps. I bought a book on iOS
development and built a hello
world or two. My old co-worker
Ryan Youngman made iSaber to
let you swing a fake lightsaber
at your friends with your phone.
Every developer I knew was
talking about iOS development
but at some point the fun of all
this iOS stuff dried up.

Seeing the hoops you had to
jump through to ship an app on
iOS didn’t seem right.

How quickly developers trad-
ed away the wide-open spaces of
the web for a walled castle with
a monarch enforcing a 30% tax.

So, I decided to focus on
building “installable web apps”
for iOS instead because surely,
the web would catch up.

However, this became
problematic
Despite the popularity of na-
tive apps, the original idea of
these standalone installable web
apps has continued to be sup-
ported for new versions of iOS.
But, they didn’t fit into Apple’s
business model! The App Store
turned into a huge business,
the term “app” was going main-
stream, and every business sud-
denly felt they needed to have
their own “app,” whether they
had any users or not.

As Apple’s app business
took off these capabilities very
clearly and quickly, and some-
what unsurprisingly were de-
prioritized. The end result for
those of us still trying to build
installable web apps for iOS was
that with nearly every new iOS
release, some key feature that
we were depending on broke.

I’m talking about stuff that
QA should have caught, stuff
that if anybody at Apple was
actually building apps this way
would have noticed before they
released.

One quick example that bit
me was how they broke the abili-
ty to link out to an external web-
site from within an app running
in “standalone” mode. target=_
blank no longer worked, neither
did window.open or anything else I
could think of. So now since our
“standalone” app didn’t have a
URL bar or back button, it would

simply take the user to the link
they clicked within the same full-
screen web view with no way to
return to the app! The only way
out was forcibly quitting the app
(hopefully the user knew how to
do that).

We were running a chat
product at the time, so any time
someone pasted a URL into chat
it was essentially a trap.

These sorts of issues con-
tinued to happen release after
release. Soon it became obvious
that while you can sort of build
these types of apps on iOS, you
can’t really depend on them not
breaking with the next update.

The message from Apple
seemed clear: web apps are sec-
ond-class citizens on iOS.

What of Android?
I didn’t care much at the time,
but somewhere in the middle
of all of this, Android appeared
on the scene. It promised to
be a more open alternative
as a mobile platform. It was a
collaboration between several
big companies, and it was their
attempt to essentially fight
off the fruit-company-come-
back-kid-turned-gorilla and its
Mighty Joe App Store.

It started gaining traction,
but its web experience at the
beginning was quite sub-par.

It (Android) is currently the best
mobile web app platform.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://twitter.com/cruffledoh

45hacker bits

Fast-forward five
years…

1.	 People are somewhat burnt
out on Apps.

2.	 The vast majority of de-
velopers building native
iOS apps never made back
their expenses. We knew
this in 2013.

3.	 A few games are still mak-
ing money, but that’s a
lottery.

4.	 Meanwhile, there are over
1.4 billion active Android
users.

5.	 Android switched to using
Chrome as the default
browser.

6.	 Chrome, Opera, and Fire-
fox have added features to
allow building actual app
experiences via the Web.

And here I am… switching to
Android.

So why Android? Isn’t
it just more of the
same?
Yes. It is. Android itself bores
me, honestly. There’s nothing
all that terribly new or exciting
here.

Save one very important de-
tail… IT’S CURRENTLY THE BEST
MOBILE WEB APP PLATFORM.

What do you mean?!
Doesn’t Safari run my
JS faster?
Most people when they say this
are referring to this post by Jeff
Atwood (a.k.a. codinghorror),
which I wrote a whole response

the ability to create app-like
experiences on the OS with web
technology.

Very little seems to be hap-
pening in that regard as far as I
can tell.

Let's look at Apple
and WebRTC
A few years ago, I built Sim-
pleWebRTC and the first version
of Talky.io.

I seem to have been one of
the early web geeks to get re-
ally excited about WebRTC (the
browser web technology that
now powers Google Hangout
video calls). Anyway, I managed
to figure out how to build one
of the first, possibly the first
multi-user, peer-to-peer, video
calling WebRTC app on the web
that worked with more than 2
people and worked between
Chrome and FireFox.

This was my first experience
with Apple lagging behind in
implementing new web APIs.
Although Chrome and FireFox
were both actively implement-
ing and excited about WebRTC,
there was not a peep from
Apple. iOS still hasn’t added
WebRTC support to this day.
Though, they’ve apparently been
hiring WebRTC engineers of the
Safari team. So here’s hoping…

But it kinda makes sense,
right? Why would they? They’d
rather you use FaceTime, right?

They seem fine with improv-
ing the browser engine, but
seem very slow to do anything
that involves increasing the
web’s reach in the OS.

Anyway, we shipped Talky.io
as a web app that worked in

post to, if you’re interested.
So yeah, Safari runs my JS

faster, but guess what… most
of your users won’t have a shiny
new iPhone 6s, and as I’ve said
before, betting on desktop-like
performance on the mobile web,
or sending huge frameworks like
Ember to a mobile device proba-
bly isn’t a great idea.

With performance, there is
such a thing as “good enough.”
It wouldn’t matter if Safari ran JS
50x faster! The only thing that
matters is whether my app runs
fast enough. Beyond that, as a
user, I don’t care.

As it turns out, it’s possible
to write web apps that run at
60fps even on older, crappier
hardware.

But, all that aside, note this:
I said “better app platform” not
faster JavaScript runtime.

So why not just use
Chrome for iOS?!
As I started tweeting about
switching, I was surprised to
realize that many people don’t
know that Chrome, Opera, and
Firefox for iOS all just use Web-
Kit web views under the hood.

In fact, apps that include
a different browser engine are
a violation of Apple’s terms of
service.

They're just different UIs on
the same browser engine.

But isn’t WebKit
getting better?
Yes, it seems like they're picking
up some momentum recently.

But, there’s a whole lot more
to it than just what happens
in the browser window. I want

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://medium.com/swlh/nobody-wants-your-app-6af1f7f69cb7
https://medium.com/swlh/nobody-wants-your-app-6af1f7f69cb7
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/#426a415f12cb?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/#426a415f12cb?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://meta.discourse.org/t/the-state-of-javascript-on-android-in-2015-is-poor/33889?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://meta.discourse.org/t/the-state-of-javascript-on-android-in-2015-is-poor/33889?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://joreteg.com/blog/viability-of-js-frameworks-on-mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://simplewebrtc.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://simplewebrtc.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://talky.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://talky.io/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://joreteg.com/blog/viability-of-js-frameworks-on-mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://www.youtube.com/watch?v=okk0BGV9oY0
https://www.youtube.com/watch?v=okk0BGV9oY0
http://www.pocketjavascript.com/blog/2015/11/23/introducing-pokedex-org?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.pocketjavascript.com/blog/2015/11/23/introducing-pokedex-org?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.pocketjavascript.com/blog/2015/11/23/introducing-pokedex-org?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://developer.apple.com/library/mac/releasenotes/General/WhatsNewInSafari/Articles/Safari_9_1.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://developer.apple.com/library/mac/releasenotes/General/WhatsNewInSafari/Articles/Safari_9_1.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

46 hacker bits

Chrome and FireFox, and even-
tually @hjon built an iOS app for
it too.

But the thing that blew my
mind was one day I just down-
loaded Chrome on Android,
opened it to Talky.io and sure
enough… IT JUST FRIGGIN’
WORKED!

Since then I’ve been paying
much closer attention to what’s
happening in mobile Chrome
and it’s very impressive.

Meanwhile on
Android
During the last couple of years,
a few very bright, persistent,
and idealistic developers (many
of them at Google) who believed
in the web have been at work
pushing for, and implementing
new web standards that fill the
gaps between native and web.

Incredibly cool new stuff is
coming, like:

•	 WebBluetooth (yup, talking
to Bluetooth devices from JS
on a webpage).

•	 WebNFC is coming too, ap-
parently.

These things are going to blow
the roof off IoT stuff (but that’s
a whole other blog post).

Just type chrome://flags in the
URL bar of Chrome for Android
and read through all the stuff
that's currently in the works. It's
amazing!

Anyway, in the past couple
of years these fine folks have
built a feature that has me more
excited than I’ve been by any
web tech for a loooooong time:

ServiceWorker and the concept
of Progressive Web Apps.

I believe that the introduction of
ServiceWorker and Progressive

Web Apps on Android is the
most important thing to happen
to the mobile web since Steve
first introduced the iPhone.

Why?! Because, for the first
time, we have a mobile platform
with a huge user base, which
lets me build a web app that is
treated as a first-class citizen by
the platform!

(Note: yes, I’m aware there
have been other attempts to do
this, but none of those had 1.4
billion active users.)

These folks finally gave us a
platform where web apps were
first-class citizens!

And to be clear, I’m not just
talking about a way to put a
glorified bookmark on the home
screen.

I’m talking about a way for
us to build web apps that are
indistinguishable from native
apps.

The term that’s sticking for
these types of apps is “Progres-
sive Web Apps”.

In fact, I think Progressive
Web Apps (PWAs) actually have a
huge leg-up on native apps be-
cause you can start using them
immediately. You don't have to
jump to an app store and wait a
minute or two until some huge
binary is done downloading.
They’re just web apps, they have
URLs, and they can be built to
load super fast. Because… well,
we’ve been optimizing load time
performance on the web for a
long time.

There’s just so much less
friction for users to start using
them. Just think what that would
do to your conversion numbers!

Because of the improved
on-boarding experience I believe
that businesses targeting An-
droid users should be strongly
questioning whether they should
be building native Android apps
at all.

So what are
Progressive Web
Apps anyway?
Unfortunately, for some reason
Google has managed to teach
a generation of devs the words
“Polymer” and “Angular”, while
the vast majority of web devel-
opers that I meet and talk to
today have still have ZERO idea
what ServiceWorkers or Progres-
sive Web Apps are.

Some of this is because of
the newness of it all, and some
of this is improving recently.
Butsheesh… I hope this changes.

You can think of a progres-
sive web app like this:

It’s an app written in HTML,
CSS, and JS that can completely
masquerade as a native app.

This includes:
1.	 Living on the home screen.
2.	 Existing in the Android

“app switcher” as a sepa-
rate app (not as part of the
browser app).

3.	 True offline behavior,
meaning when you tap
the app icon,it will open re-
gardless of current Internet
status.

4.	 The ability to run in the
background and triggering
OS-level notifications, even
when the app and browser
is closed.

Instead of starting as a
useless web page with a “please
install our app” banner, these
apps start life running as a tab
in your browser. Then progres-
sively they become more in-
stalled/integrated into the OS.

At first, it’s really no differ-
ent than any other website you
visit. But then if you return to
that same website/app in your
browser again, the browser itself
will subtly ask the user if they’d

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://twitter.com/hjon

47hacker bits

like to add it to their home
screen.

From this moment on it’s
indistinguishable from a native
app to the user.

Also, if you build these
correctly there’s usually nothing
else the user has to download or
wait for at all. This means that
adding it to the home screen is
effectively an instant app install.
Again, imagine what that’ll do to
your conversions? Eh? (No, I’m
not Canadian)

Luckily, we don’t have to en-
tirely guess about the business
impact. We actually have some
real data from a certain $20 bil-
lion dollar online retailer in India
called FlipKart, who did launch
a PWA and have shared some of
their numbers.

Key highlights from FlipKart’s
experience:
•	 40% returning visitors week

over week.
•	 +63% conversions from

Home screen visits.
•	 3x time spent on FlipKart

Lite

That data came from Alex
Russel’s recent Fluent Keynote
on what’s next for mobile. I
encourage you to watch and
share it with product managers
and leaders at your company. It
does a great job of explaining
the how/why of Progressive Web
Apps.

For related reading check out:
•	 Addy Osmani’s Getting

started with Progressive Web
Apps

•	 Mozilla’s service worker ex-
amples at: ServiceWorke.rs

•	 FlipKart’s original technical
post about their PWA

•	 Jake Archibald’s Offline
Cookbook

•	 Aditya Punjani's post on how
they built FlipKart lite

So what does this all
mean for us?
We, as web developers, can
finally build screaming fast,
fully offline-able, and user-pri-
vacy-protecting apps that work
cross-platform without the
need for any friggin’ App Store
taxes, approval processes, or
doorslamming users up front
with “please install my app to
use this service”.

What about iOS
support?
Well, the beauty of it is an iOS
user can still use your web app
even if service worker support
doesn’t exist.

They just don’t get the extra
goodies, like offline and push
notifications.

But you could also bundle
the app with Cordova and use
the Service Worker plugin, and
that would in theory let you
use the same code to do those
things but bundled up as an iOS
app.

Why should I care?
React Native exists
now and solves the
same problem.
Personally, I actually kind of
wish tools like React Native
didn’t exist. Stay with me, let me
explain. React Native is an amaz-
ing and very impressive tool that

lets us use our JS skills to write
native iOS apps.

But as I’ve been saying, I
don’t think we should be build-
ing native apps unless we abso-
lutely have to.

The end result of React
Native is that because it exists
and because it’s largely aimed
at web developers, we now have
web devs flocking to build native
apps just because they can!

I fear that this undermines
our ability to use our collective
bargaining power to encourage
Apple to implement support for
Progressive Web Apps.

To be clear, I completely
understand why it was created
and I have a lot of respect for
the technical achievement it
represents, and the developers
behind it.

I just don’t want us to stop
pushing Apple to improve web
support.

In summary
So, all this said, these things led
me to finally exercising the only
voting power I have as a con-
sumer:I took my money and left.

I don’t see this as switching
to Android; I’m simply switch-
ing to the best mobile web app
platform available today.

The web is the only truly
open platform we’ve got. It’s the
closest thing we have to a level
playing field.

This is why I’m focusing all
my efforts on building Progres-
sive Web Apps, and I hope you’ll
do the same. 

Reprinted with permission of the original author. First appeared at joreteg.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://www.oreilly.com/ideas/progressive-web-apps-and-whats-next-for-mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://www.oreilly.com/ideas/progressive-web-apps-and-whats-next-for-mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://www.oreilly.com/ideas/progressive-web-apps-and-whats-next-for-mobile?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://addyosmani.com/blog/getting-started-with-progressive-web-apps/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://addyosmani.com/blog/getting-started-with-progressive-web-apps/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://addyosmani.com/blog/getting-started-with-progressive-web-apps/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://serviceworke.rs/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://serviceworke.rs/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://tech-blog.flipkart.net/2015/11/progressive-web-app/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://tech-blog.flipkart.net/2015/11/progressive-web-app/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://jakearchibald.com/2014/offline-cookbook/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://jakearchibald.com/2014/offline-cookbook/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://medium.com/@AdityaPunjani/building-flipkart-lite-a-progressive-web-app-2c211e641883
https://medium.com/@AdityaPunjani/building-flipkart-lite-a-progressive-web-app-2c211e641883
https://www.npmjs.com/package/cordova-plugin-service-worker?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://joreteg.com/blog/why-i-switched-to-android?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

48 hacker bits

On asking
job candidates to code

Opinion

BY PHIL CALÇADO

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605

49hacker bits

any engineering jobs would be
always reading books. Not just
the reference books everybody
reads for their daily jobs, but
texts on software architecture,
object-oriented design, arcane
programming languages, and
advice on how to get better at
their profession.

I had a somewhat popular
programming blog in Brazil, and
I wrote a job ad as a blog post.
I described the job the best I
could, and asked people to send
me their résumé and a list of the
last three books they had read.

The response was excellent.
The temporary email address I
had set up was full of résumés,
and I was able to confirm my
hypothesis: the most interesting
résumés correlate with the list
containing books from the cate-
gories above.

At Globo.com, we’ve hired a
large team following this pro-
cess, and some of us alumni still
use something similar in our
new organisations.

Fast forward a couple of
years, and I’d applied for a job
at ThoughtWorks. I had worked
for some international compa-
nies in the past where I would be
required to speak English when
interacting with other offices,
but this would be the first time I
would speak English continuous-
ly for more than one hour. Over

Skype. And have people assess
me on my coding skills. I was
freaking out.

Luckily, ThoughtWorks had a
process that was a bit different
from the usual standards com-
panies had back then.

After a quick recruiter
screening, they sent me three
options for a code challenge
(a small problem I could solve
in any programming language
I would like to use). My code
submission would then be used
during follow-up interviews, in-
cluding a pairing session where
a ThoughtWorker and I would try
to extend my code adding a new
feature.

I spent four years at
ThoughtWorks and saw this pro-
cess produce consistently good
results over and over. It was also
important that it didn’t particu-
larly dictate what languages or
tools a candidate would have
to use. My experience with
ThoughtWorks was that I could
either choose an interesting
project or an interesting pro-
gramming language (I’ve written
Internet-scale web crawlers in
Drupal and timesheet software
in F#), so we truly practiced hire
for attitude, not for skill.

After all those years it was
time to move on. I’ve had mostly
a good experience at Thought-
Works, but my last project there

At DigitalOcean, we are
making some changes to
the recruitment process of

back-end developers. We simpli-
fied the job description and the
interview process, and added a
step that asks the candidate to
write us some code. This is an
account of my experience on
hiring processes and their use of
code reviews.

Around 2005, I had inter-
viewed for a management posi-
tion at a Globo.com, the Internet
arm of the largest Latin Ameri-
can media conglomerate. I was
coming back to product devel-
opment from a couple of years
as a consultant, and was super
excited about the opportunity.

The week before I started,
my new boss sends me an email
with what would be my first
task: hire four people to join
the four others already on my
team. It was a weird situation; I
couldn’t even tell what kind of
people I would need as I hadn’t
started working yet!

I began thinking about what
kind of people I knew would be
perfect for almost any engineer-
ing job, the people I would try
to poach. I then thought about
what particular traits or habits
these people shared.

Soon enough, I realised a
common pattern: the people I
thought were great for almost

We truly practiced
hire for attitude,

not for skill.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://hbr.org/2011/02/hire-for-attitude-train-for-sk?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://hbr.org/2011/02/hire-for-attitude-train-for-sk?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://bit.ly/do-back-end-software-engineer?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://bit.ly/do-back-end-software-engineer?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

50 hacker bits

was probably my worst. As I
looked around for a new po-
sition, I dreaded having to go
through whiteboard coding ses-
sions on some useless puzzle
— the kind of stuff my friends
reported the big Internet compa-
nies had them go through.

Once more I was lucky and
ended up applying for a position
at SoundCloud. Back then it was
just a handful of engineers, and
just like ThoughtWorks their
process started with a recruiter
screen and a coding challenge.

Different from Thought-
Works, though, their code
challenge wasn’t a puzzle but
something closer to the work
one would perform there.
SoundCloud wanted me to build
an uploader, from the user
interface down to any back-end
layers I thought I’d need.

There was one particularly
challenging part: how to imple-
ment a real-time-ish progress
bar. As brain-dead as I was
after eight hours at my project,
I found myself thinking about
possible solutions whilst on the
train from East Croydon back to
London, and immediately head-
ing to my favourite late-night
coffee shop in Old Street to
work on it. Solving the problem
was a lot of fun, and if you want

to check out what was in vogue
in Clojure in 2011 and how one
can pretend to know JavaScript
by writing Scheme with curly
brackets, you can see the code
here.

A couple of weeks later, I got
the gig and moved to Berlin. As
it happens with small organisa-
tions, even before my probation
period is over, I’d started review-
ing code for new candidates.
Unfortunately, the experience
was quite disappointing.

It turned out that most peo-
ple would put together a Rails
app with more lines on their
Gemfile than lines of actual code
they wrote. Worse, way too often
people would just get an Adobe
Flash uploader from a random
Flash component website and
not even write a single line of
code. As pragmatic as a plugin
plus minimal glue code might
be, this wasn’t a good use of
the candidate’s time or mine – I
needed them to write some code
we could read before inviting
them for more interviews.

And then we came up with
a different challenge. This
time, we would be a bit strict-
er. We would continue to not
limit whatever programming
language the candidate used
(just like with ThoughtWorks,

I dreaded having to go through
whiteboard coding sessions on
some useless puzzle.

in a small startup like Sound-
Cloud was back then, we needed
T-Shaped people more than any-
thing), but we would ask them
to use a language’s standard
library, with no third-party libs
or frameworks.

To make it more feasible, we
didn’t ask for a web app but for
something all platforms would
offer: a socket-server interface
and a simple string protocol. To
drive it closer to the needs of a
company that grew from 10 to
100 million users in less than
one year, we also included the
requirement for clients to handle
hundreds of clients at once.

But we’ve also done some-
thing else. Something that
would improve the candidate’s
experience by making sure that
their code fulfils the functional
requirements before they ex-
pose it to us. Something that
has saved us a lot of time by not
having to review code that obvi-
ously didn’t even work.

Within the problem descrip-
tion sent to candidates, we in-
cluded a functional test suíte. It
consisted of a binary that when
started would try to connect to
the candidate’s server imple-
mentation, open lots of sockets,
sends lots of messages, and ver-
ify the results against what the

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://github.com/pcalcado/UpCloud
http://www.fastcompany.com/52795/strategy-design?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

51hacker bits

or pairing sessions. This time,
we will be giving the candidate
an opportunity to talk about
the code they wrote, instead of
some generic question already
catalogued in a best-selling
book.

Another change is that
we give more emphasis to
path-to-production, or in how
the application is tested, built,
and executed. Irrespective of
how product-centric we are,
DigitalOcean is an infrastruc-
ture company and we break the
fourth wall all the time during
application development. Show-
ing interest in build and runtime
tools is a good indicator of
culture fit.

But the most significant
change is how the code is sent
to review. In previous jobs, as
a reviewer, I would receive the
code and the candidate’s ré-
sumé. Over the past few years,
the industry and academia have
built compelling evidence that
our prejudice influences our
decisions when it comes to
deciding what good or bad code
is. To help keep our bias at bay,

we are asking candidates not to
add any personally identifiable
information to the submission.

We will let reviewers know
roughly at which level the can-
didate is and how many years
of experience they have, but we
will not disclose gender, name,
nationality, geographic location,
or which schools or companies
they have been at. This required
a lot of work from our incredibly
awesome recruiting team, and a
lot of patience from our review-
ers, but preliminary results were
quite good.

I am super excited about this
first iteration of the new pro-
cess, and more than just finding
the right people to grow our
team, I hope we have enough
data to share with the industry
at some point in the near fu-
ture. 

Flávio Brasil ... not only found a bug
in our test harness, but decompiled
the (Scala!) code, wrote a patch and
submitted it as part of his solution to
the challenge.

problem description stated. The
candidate was instructed only
to send their submission once
it passed the functional test on
their local box.

The best submission ever
was definitely from Flávio Brasil,
now at Twitter, who not only
found a bug in our test harness
but decompiled the (Scala!)
code, wrote a patch and submit-
ted it as part of his solution to
the challenge. We received code
submissions written in every
language under the sun. We had
so much qualitative data, I even
gave a talk on some particular
problems we found in code sub-
missions using Node.js.

For this iteration of
our recruitment process at
DigitalOcean, I am trying to use
as leverage these past expe-
riences as much as possible.
Overall the code challenge is
very similar to the one we devel-
oped at SoundCloud, but there
are some stark differences.

The first major change is
that we are trying a simplified
interviewing process, closer to
ThoughtWorks’. Previously we
had some ad-hoc whiteboarding

Reprinted with permission of the original author. First appeared at philcalcado.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.amazon.com/Cracking-Coding-Interview-Programming-Questions/dp/098478280X/
http://www.amazon.com/Cracking-Coding-Interview-Programming-Questions/dp/098478280X/
http://www.amazon.com/Cracking-Coding-Interview-Programming-Questions/dp/098478280X/
https://en.wikipedia.org/wiki/Fourth_wall
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://arstechnica.com/information-technology/2016/02/data-analysis-of-github-contributions-reveals-unexpected-gender-bias/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://twitter.com/flaviowbrasil
https://twitter.com/flaviowbrasil
https://www.youtube.com/watch?v=kA4-b7hvWhg
https://www.youtube.com/watch?v=kA4-b7hvWhg
https://www.youtube.com/watch?v=kA4-b7hvWhg
http://philcalcado.com/2016/03/15/on_asking_job_candidates_to_code.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

52 hacker bits

I tried to virtually stalk
Mark Zuckerberg
By ALEX KRAS

Interesting

Part 1 – A naive dream

The dream
In late 2015, I finished reading Automate the Bor-
ing Stuff with Python and was very inspired to try
to automate something in my life.

At the same time, I have always been fasci-
nated by Mark Zuckerberg – the Bill Gates of our

time. A lot of people love to hate on Mark, but I
actually like the guy. Sure he got lucky in life, but
at the same time he is doing something right for
Facebook to continue to stay successful.

In any case, one day I had a “brilliant” idea.
What if I wrote a script that would follow Mark’s
public posts and send me a text whenever he post-
ed something new? Then I can be the first guy to
comment on his post.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

53hacker bits

notification when I was driving. By now the post
already had thousands of comments…

Oh well, I thought, there is always next time.
Sure enough, within a day I had another text. This
time it was within 1 minute from the original post.
I quickly opened the link, only to discover that
Mark’s post already had close to 100 comments.

Now don’t get me wrong, I am not stupid. I
knew that Mark’s posts were popular and would
get a lot of comments.

I even tried to estimate, the rate at which
people were posting replies. I’ve looked through
Mark’s older posts and saw some posts with tens
of thousands of comments. So if you take 10,000

comments and divide by 24 hours, then divide by
60 minutes, you get about 7 posts per minute.

What I didn’t realize in my estimate is that
those comments were not evenly distributed in
time and that I had a very small chance of being
the first to comment.

I knew that I was losing my dream and I con-
sidered my options. :)

I could set my script to run more often than
every 60 seconds, to give myself an early warning.
By doing so I would risk showing up on Face-
book’s radar as a spammer and it just didn’t feel
right for me to bombard their servers.

Another option that I considered was to try
to make an automated reply, in order to be one
of the first people to comment. This approach,
however, would defeat the purpose of saying
something meaningful and would not help me to
become friends with Mark.

I’ve decided against both of these ideas and
admitted my defeat. I’ve also realized that I could
turn this (failed) experiment into an interesting
Data Exploration project.

After a while Mark would notice my comments
and would begin to wonder “Who is this guy that is
always posting meaningful responses to all of my
posts?” Then he would invite my wife and I to his
house for dinner and our kids will become friends.
:)

So, without further ado I got to work.
I’ve briefly considered using Facebook APIs

to get notified on Mark’s posts. I’ve had mixed
experience with APIs in the past, hitting rate limits
pretty quickly and other related problems. Plus, I
wanted to use my Automate the Boring Stuff with
Python knowledge.

So I went the other route and wrote a Selenium

script (which was really easy to do using selenium
module in Python) that would:

1.	 Log in to Facebook.
2.	 Use current timestamp as the time of last

post.
3.	 Keep checking every 60 seconds if Mark has

posted a new post.
4.	 Send me a Text using Twilio API, with a link

to the new post.

I happen to own a small server, so I set the
script to run indefinitely in a headless browser
(PhantomJS) and began to wait.

Paradise lost
It took a couple of days for Mark to post some-
thing and I began to get worried that my script
did not work.

At some point I had to go to the post office.
Afterwards, I drove back home, parked my car,
checked my phone and saw a new SMS text from
my script. My heart started to beat really fast and
I rushed to open the link. I soon realized that the
post took place 5 minutes ago and I’d missed the

What if I wrote a script that would follow
Mark’s public posts and send me a text
whenever he posted something new?

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://selenium-python.readthedocs.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/twilio/twilio-python
http://phantomjs.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

54 hacker bits

Part 2 –Data analysis

Scraping
Having made a big error in my estimate of the
rate at which people were replying to Mark, I was
curious to explore when and what people were
saying. In order to do that, I needed a data set of
comments.

Without putting much thought into it, I decid-
ed to scrape one of Mark’s most recent posts at
the time.

My first approach was to try to modify my
notification script to:

1.	 Log in to Facebook.
2.	 Go to the post that Mark has made.
3.	 Click on “Show More Comments” link, until

all comments were loaded.
4.	 Scrape and parse the HTML for comments.

Once again I’d underestimated the scale of the
operation. There were just too many comments
(over 20,000) and it was too much for a browser
to handle. Both Firefox and PhantomJS continued
to crash without loading all of the comments.

I had to find another way.
I proceeded to examine how View more com-

ments requests were made using the Network
Toolbar in Chrome Developer Tools. Chrome al-
lows you to right click on any request and to copy
it as CURL via “Copy as cURL” option.

I ran the resulting CURL command in my ter-
minal, and it returned some JSON. BINGO!

At that point all I had to do was to figure out
how pagination of comments was done. This
turned out to be a simple variable in the query of
the request, which acted as a pointer to the next
set of comments to fetch.

I’ve converted the CURL command to a Python
request code via this online tool.

After that I wrote a script that would:

1.	 Start at pagination 0.
2.	 Make a comments request.
3.	 Store it in memory.
4.	 Increment the pagination.
5.	 Sleep for a random amount of time from 5

to 10 seconds.
6.	 Repeat the loop, until no more comments

were found.
7.	 Save all of the comments to a JSON file.

I’ve ended up with an 18Mb minimized JSON file
containing about 20,000 comments.

Analyzing the data

First I looked at the distribution of comments
over time
As can be seen in the two plots, it looked a lot like
exponential decay, with most of the comments
being made in the first two hours.

The first 1,500 comments were made within
first 10 minutes. No wonder I had a hard time
making it to the top.

Next I wanted to see what people were saying
I created a word cloud of the most commonly
used keywords in comments using a python li-
brary called (surprise, surprise) – Word Cloud.

Looking at the word cloud, I realized that I

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://www.facebook.com/zuck/posts/10102557276035121
https://www.facebook.com/zuck/posts/10102557276035121
http://curl.trillworks.com/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://github.com/amueller/word_cloud

55hacker bits

might have picked the wrong day to do this exper-
iment. Most of the people responded in kind to
Mark’s wishes of Merry Christmas and Happy New
Year. That was great news for Mark, but kind of
boring from the data exploration stand point.

Digging deeper
After I finished the word cloud, I'd spent WAY TOO
MUCH TIME trying to gain a deeper understanding
of the data.

The data set turned out to be a bit too big for
me to iterate on quickly and all of the positive
comments created too much noise.

I decided to narrow down the data set by
removing all comments with any of the following
word stems. A word stem is simply a shortest
version of the word that still makes sense. For
example, by removing comments that have a word
“thank” in it, I was able to remove both the com-
ments with the words “thank you” as well as the
comments with the word “thanks.” I’ve used nltk
library to help me convert my words to stems.

I organized the stems by a type of comment
that they usually belonged to:

Happy New Year Wishes
•	 new
•	 happ
•	 year
•	 wish
•	 bless
•	 congrat
•	 good luck
•	 same
•	 best
•	 hope
•	 you too

Comment on Photo of the Family
•	 photo
•	 baby
•	 babi
•	 beautiful
•	 pic
•	 max
•	 family
•	 famy
•	 cute
•	 child
•	 love
•	 nice
•	 daughter
•	 sweet Comment word cloud

 Number of comments during
first 24 hours

 Number of comments during
first 2 hours

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://en.wikipedia.org/wiki/Word_stem
http://www.nltk.org/api/nltk.stem.html?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

56 hacker bits

Thanking Mark for creating Facebook
•	 thank
•	 connect
•	 help

After removing all of the typical comments, I end-
ed up with 2887 “unusual” comments.

Digging even deeper
I also recently finished reading Data Smart, from
which I learned that Network Analysis can be used
to identify various data points that belong togeth-
er, also known as clusters.

One of the examples in the book used Gephi
– an amazing software that makes cluster analysis
very easy and fun. I wanted to analyze the “un-
usual” comments in Gephi, but first I had to find a
way to represent them as a Network.

In order to do that, I’ve:
1.	 Removed meaningless words such as “and”

or “or” (also known as stop words) from ev-
ery comment using nltk library.

2.	 Broke remaining words in every comment
into an array (list) of word stems.

3.	 For every comment calculated an intersec-
tion with every other comment.

4.	 Recorder a score for every possible intersec-
tion.

5.	 Removed all intersections with a score of 0.3
or less.

6.	 Saved all comments as nodes in Gephi graph
and every intersection score as an undirect-
ed edge.

By now you might be wondering how the
intersection score was calculated. You may also
wonder what the heck is Gephi graph, but I’ll get
to it a bit later.

Calculating intersection score
Let say we have two comments:

["mark", "love"] # From "Mark, I love you"

and

["mark", "love", "more"] # From "Mark, I love you

more"

We can find the score as follows:

def findIntersection(first, second):

 # Find a sub set of words that is present

 # in both lists

 intersection = set(first) & set(second)

 # Words both comments have in common

 intersectionLength = len(intersection)

 # Total length of both comments

 wordCount = len(first) + len(second)

 # Corner case

 if wordCount == 0:

 return 0

 else:

 # Intersection score between two comments

 return (intersectionLength/wordCount)

So for our example above:
1.	 Intersection between two comments is

["mark", "love"] which is 2 words.
2.	 Total length of both comments is 5 words.
3.	 Intersection score is 2/5 = 0.4.

Note: I could have used average length of two
comments (so 2+3/2 = 2.5) instead of total length
(5), but it would not have made any difference
since the score was calculated similarly for all of
the comments. So I decided to keep it simple.

Once I had all of intersection calculated, I
saved all comments in the nodes.csv file, that had
the following format:

Id;Label

1;Mark, I love you

I’ve saved all intersection in the edges.csv file,
that had the following format:

Source;Target;Weight;Type

1;2;0.4;"Undirected"

Analyzing the network
This was all that was needed to import my data
into Gephi as a Network Graph. You can read
more about Gephi file formats here and this video
provides a good introduction to Gephi and how it
can be used.

Once I imported my data into Gephi, I ran a
network analysis algorithm called “Force Atlas 2”,
which resulted in the following network graph.

I’ve manually added the text in red to sum-
marize some of the clusters. If you click on the
image, you will be taken to a full screen represen-
tation of the graph. It is pretty big, so you might

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
http://www.amazon.com/gp/product/111866146X
https://en.wikipedia.org/wiki/Network_theory
http://www.amazon.com/gp/product/111866146X
https://gephi.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Stop_words
http://www.nltk.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://en.wikipedia.org/wiki/Word_stem
https://gephi.org/users/supported-graph-formats/spreadsheet/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
https://www.youtube.com/watch?v=kbLFMObmLNQ

57hacker bits

have to zoom out and scroll for a while before you
see some data.

Some notes on the results

ably too high and caused the error. On the flip
side, it has helped to reduce the number of edges,
focusing on the most important connections.

Please let me know in the comments if you
find anything else noteworthy or if you have
suggestions on how intersection scores can be
improved.

Conclusion
It is hard being a celebrity.

I started this journey naively assuming that I
can get Mark’s attention by simply posting a com-
ment on his timeline. I did not realize the amount
of social media attention an average celebrity
gets.

It would probably take a dedicated data scien-
tist working fulltime just to get insight into all of
the comments that Mark receives. While Mark can
afford to hire such a person, my bet is that he is
using his resources for more meaningful things.

That being said, this has been a great learning
experience for me. Gephi is a magical tool, and I
highly recommend checking it out.

If you want some inspiration for automating
things, I highly recommend reading Automate the
Boring Stuff with Python.

If you are looking for a good entry-level text
on data science, I found Data Smart to be an infor-
mative read, although hard to follow at times.

Also note that I’ve destroyed all of my data
sets to comply as best as I can with Facebook’s
Terms of Service. Scraping content without per-
mission is also against Facebook’s Terms of Ser-
vice, but I’ve avoided thinking about it until after
I’ve done all of my analysis.

I am hoping that Facebook will overlook my
transgression, but I wanted to make sure I don’t
send anybody else down the wrong path without a
proper warning.

If all else fails, you can always follow me on
Twitter. :) 

I was really happy to see my approach finally
working (after many days of trying).

I have been staring at those comments for a
long time and I’ve seen some references to “mon-
ey”. Therefore, I was not surprised to see a couple
of clusters asking Mark “Where is my Money?”

I was very surprised, however, to see a cluster
of comments mentioning a specific number – 4.5
million to be exact. I had no idea where this num-
ber was coming from, but a quick Google search
pointed me to this hoax. Turns out a lot of people
were duped into believing that Mark would give
away 4.5 million to 1000 lucky people. All you had
to do was to post a “Thank you” message of sorts.

Other than that, I didn’t see anything very
interesting. There were some spammers and some
people asking Mark to ban some people from
Facebook. Some aggression towards Mark and a
lot more of the general types of comments that I
did not filter out.

I’ve also noticed some weaknesses in my
approach. For example, there were two clusters
around the word “precious”. It was probably
caused by removing relationships that did not
have intersection score of at least 0.3. Since I did
not use the average length for two comments, the
threshold of 0.3 really meant that the two com-
ments were at least 60% similar, and it was prob-

Reprinted with permission of the original author. First appeared at alexkras.com.

http://hackerbits.com/?utm_source=footer&utm_medium=pdf&utm_campaign=issue201605
https://gephi.org/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com/review-automate-the-boring-stuff-with-python-by-al-sweigart/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.amazon.com/gp/product/111866146X
https://twitter.com/akras14
https://twitter.com/akras14
http://www.snopes.com/mark-zuckerberg-facebook-giveaway-scam/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://www.alexkras.com/i-tried-to-virtually-stalk-mark-zuckerberg/?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

Believe it or not, this ubiquitous sauce was once made from
pickled fish parts. Ketchup began life as a Southern Chinese
condiment made from fish, salt and spices thousands of

years ago. The sauce was a hit with 18th century British sailors,
who brought it to Europe as a prized delicacy. British cooks soon
came up with their own version of ketchup, which included savory
ingredients like oysters, mushrooms and nuts. After countless it-
eration, ketchup eventually evolved into the tomato-based version
that we know and love.

* FOOD BIT is where we, enthusiasts of all edibles, sneak in a fun fact about food.

Ketchup’s fishy origins…

food bit *

HACKER BITS is the monthly magazine that gives you the hottest technology and startup stories crowdsourced
by the readers of Hacker News. We select from the top voted stories for you and publish them in an easy-to-read
magazine format.

Get HACKER BITS delivered to your inbox every month! For more, visit hackerbits.com.

http://news.ycombinator.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016
http://hackerbits.com?utm_source=hackerbits.com&utm_medium=magazine&utm_campaign=may2016

